Skip to main content

Advertisement

Log in

Ultralow-density double-layer silica aerogel fabrication for the intact capture of cosmic dust in low-Earth orbits

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The fabrication of an ultralow-density hydrophobic silica aerogel for the intact capture cosmic dust during the Tanpopo mission is described. The Tanpopo experiment performed on the International Space Station orbiting the Earth includes the collection of terrestrial and interplanetary dust samples on a silica aerogel capture medium exposed to space for later ground-based biological and chemical analyses. The key to the mission’s success is the development of high-performance capture media, and the major challenge is to satisfy the mechanical requirements as a spacecraft payload while maximizing the performance for intact capture. To this end, an ultralow-density (0.01 g cm−3) soft aerogel was employed in combination with a relatively robust 0.03 g cm−3 aerogel. A procedure was also established for the mass production of double-layer aerogel tiles formed with a 0.01 g cm−3 surface layer and a 0.03 g cm−3 open-topped, box-shaped base layer, and 60 aerogel tiles were manufactured. The fabricated aerogel tiles have been demonstrated to be suitable as flight hardware with respect to both scientific and safety requirements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  Google Scholar 

  2. Shi F, Wang L, Liu J (2006) Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater Lett 60:3718–3722

    Article  Google Scholar 

  3. Yokogawa H, Yokoyama M (1995) Hydrophobic silica aerogels. J Non-Cryst Solids 186:23–29

    Article  Google Scholar 

  4. Tabata M, Adachi I, Ishii Y, Kawai H, Sumiyoshi T, Yokogawa H (2010) Development of transparent silica aerogel over a wide range of densities. Nucl Instrum Methods A 623:339–341

    Article  Google Scholar 

  5. Burchell MJ, Graham G, Kearsley A (2006) Cosmic dust collection in aerogel. Annu Rev Earth Planet Sci 34:385–418

    Article  Google Scholar 

  6. Tsou P (1995) Silica aerogel captures cosmic dust intact. J Non-Cryst Solids 186:415–427

    Article  Google Scholar 

  7. Noguchi T, Nakamura T, Ushikubo T, Kita NT, Valley JW, Yamanaka R, Kimoto Y, Kitazawa Y (2011) A chondrule-like object captured by space-exposed aerogel on the international space station. Earth Planet Sci Lett 309:198–206

    Article  Google Scholar 

  8. Brownlee D, Tsou P, Aléon J et al (2006) Comet 81P/Wild 2 under a microscope. Science 314:1711–1716

    Article  Google Scholar 

  9. Yamagishi A, Yano H, Okudaira K, Kobayashi K, Yokobori S, Tabata M, Kawai H (2007) TANPOPO: astrobiology exposure and micrometeoroid capture experiments. Biol Sci Space 21:67–75 [in Japanese]

    Article  Google Scholar 

  10. Yamagishi A, Yano H, Okudaira K, Kobayashi K, Yokobori S, Tabata M, Kawai H, Yamashita M, Hashimoto H, Naraoka H, Mita H (2009) Tanpopo: astrobiology exposure and micrometeoroid capture experiments. Trans JSASS Space Tech Jpn 7:Tk_49–Tk_55

    Article  Google Scholar 

  11. Yamagishi A, Yokobori S, Hashimoto H, Yano H, Higashide M, Tabata M, Imai E, Yabuta H, Kobayashi K, Kawai H (2014) Tanpopo: astrobiology exposure and micrometeoroid capture experiments—proposed experiments at the Exposure Facility of ISS-JEM. Trans JSASS Aerosp Tech Jpn 12:Tk_49–Tk_55

    Article  Google Scholar 

  12. Tabata M, Imai E, Yano H, Hashimoto H, Kawai H, Kawaguchi Y, Kobayashi K, Mita H, Okudaira K, Sasaki S, Yabuta H, Yokobori S, Yamagishi A (2014) Design of a silica-aerogel-based cosmic dust collector for the Tanpopo mission aboard the International Space Station. Trans JSASS Aerosp Tech Jpn 12:Pk_29–Pk_34

    Article  Google Scholar 

  13. National Institute of Standards and Technology (U.S. Department of Commerce) (2011) Carbon dioxide, Phase change data. In: Linstrom PJ (ed) NIST chemistry WebBook. http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI&Mask=4#Thermo-Phase. Accessed 10 July 2015

  14. Tabata M, Adachi I, Kawai H, Sumiyoshi T, Yokogawa H (2012) Hydrophobic silica aerogel production at KEK. Nucl Instrum Methods A 668:64–70

    Article  Google Scholar 

  15. Adachi I, Sumiyoshi T, Hayashi K, Iida N, Enomoto R, Tsukada K, Suda R, Matsumoto S, Natori K, Yokoyama M, Yokogawa H (1995) Study of a threshold Cherenkov counter based on silica aerogels with low refractive indices. Nucl Instrum Methods A 355:390–398

    Article  Google Scholar 

  16. Sumiyoshi T, Adachi I, Enomoto R, Iijima T, Suda R, Leonidopoulos C, Marlow DR, Prebys E, Kawabata R, Kawai H, Ooba T, Nanao M, Suzuki K, Ogawa S, Murakami A, Khan MHR (1999) Silica aerogel Cherenkov counter for the KEK B-factory experiment. Nucl Instrum Methods A 433:385–391

    Article  Google Scholar 

  17. Adachi I, Fratina S, Fukushima T, Gorišek A, Iijima T, Kawai H, Konishi M, Korpar S, Kozakai Y, Križan P, Matsumoto T, Mazuka Y, Nishida S, Ogawa S, Ohtake S, Pestotnik R, Saitoh S, Seki T, Sumiyoshi T, Tabata M, Uchida Y, Unno Y, Yamamoto S (2005) Study of highly transparent silica aerogel as a RICH radiator. Nucl Instrum Methods A 553:146–151

    Article  Google Scholar 

  18. Tabata M, Adachi I, Kawai H, Kubo M, Sato T (2012) Recent progress in silica aerogel Cherenkov radiator. Phys Proc 37:642–649

    Article  Google Scholar 

  19. Tillotson TM, Hrubesh LW (1992) Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J Non-Cryst Solids 145:44–50

    Article  Google Scholar 

  20. Tabata M, Adachi I, Fukushima T, Kawai H, Kishimoto H, Kuratani A, Nakayama H, Nishida S, Noguchi T, Okudaira K, Tajima Y, Yano H, Yokogawa H, Yoshida H (2005) Development of silica aerogel with any density. In: Yu B (ed) Conference record on 2005 IEEE nuclear science symposium, vol 2, pp 816–818

  21. Born M, Wolf E (1975) Principles of optics, 5th edn. Pergamon Press, Oxford

    Google Scholar 

  22. Burchell MJ, Fairey SAJ, Foster NJ, Cole MJ (2009) Hypervelocity capture of particles in aerogel: dependence on aerogel properties. Planet Space Sci 57:58–70

    Article  Google Scholar 

  23. Jones SM (2007) A method for producing gradient density aerogel. J Sol-Gel Sci Technol 44:255–258

    Article  Google Scholar 

  24. Tabata M, Yano H, Kawai H, Imai E, Kawaguchi Y, Hashimoto H, Yamagishi A (2015) Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment. Orig Life Evol Biosph 45:225–229

    Article  Google Scholar 

  25. Tabata M, Kawaguchi Y, Yokobori S, Kawai H, Takahashi J, Yano H, Yamagishi A (2011) Tanpopo cosmic dust collector: silica aerogel production and bacterial DNA contamination analysis. Biol Sci Space 25:7–12

    Article  Google Scholar 

  26. Ogata Y, Yabuta H, Nakashima S, Okudaira K, Moriwaki T, Ikemoto Y, Hasegawa S, Tabata M, Yokobori S, Mita H, Kobayashi K, Imai E, Hashimoto H, Kawaguchi Y, Sugino T, Yano H, Yamagishi A (2013) Hypervelocity capture of Murchison meteorite particles in aerogel: ground-based experiment for the cosmic dusts capture at the International Space Station. ISTS Web paper archives, 2013-r-51p

  27. Kawaguchi Y, Sugino T, Tabata M, Okudaira K, Imai E, Yano H, Hasegawa S, Hashimoto H, Yabuta H, Kobayashi K, Kawai H, Mita H, Yokobori S, Yamagishi A (2014) Fluorescence imaging of microbe-containing particles shot from a two-stage light-gas gun into an aerogel. Orig Life Evol Biosph 44:43–60

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the members of the Tanpopo Collaboration and Prof. I. Adachi of the High Energy Accelerator Research Organization (KEK) in Japan for their assistance with the aerogel design, development, and fabrication. This study was supported in part by the Space Plasma Laboratory at ISAS, JAXA, and we would like to thank Dr. S. Hasegawa and the crew for their two-stage light-gas gun operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Tabata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabata, M., Kawai, H., Yano, H. et al. Ultralow-density double-layer silica aerogel fabrication for the intact capture of cosmic dust in low-Earth orbits. J Sol-Gel Sci Technol 77, 325–334 (2016). https://doi.org/10.1007/s10971-015-3857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3857-3

Keywords

Navigation