Journal of Sol-Gel Science and Technology

, Volume 77, Issue 1, pp 136–144 | Cite as

Luminescent Eu3+-doped NaLa(WO4)(MoO4) and Ba2CaMoO6 prepared by the modified Pechini method

  • M. Sletnes
  • S. L. Skjærvø
  • M. Lindgren
  • T. Grande
  • M.-A. EinarsrudEmail author
Original Paper


Modified Pechini synthesis routes were developed for synthesis of the novel red phosphor materials NaLa(WO4)(MoO4):Eu3+ and Ba2CaMoO6:Eu3+. Phase pure NaLa(WO4)(MoO4):Eu3+ was obtained at calcination temperatures ≥600 °C using malic acid or tartaric acid as complexing agents. Phase pure Ba2CaMoO6:Eu3+ was attained using EDTA and citric acid, at calcination temperatures ≥800 °C. Choice of complexing agents were discussed on the basis of the solubility of the precursors, metal complex stability constants and conformations of the complexes. The powder properties were characterised using X-ray diffraction, thermal analysis and electron microscopy. Photoluminescence emission intensity was studied as a function of the complexing agents used and calcination temperature of the powders. Maximum emission intensity for NaLa(WO4)(MoO4):Eu3+ was obtained at a calcination temperature of 600 °C, whereas the maximum for Ba2CaMoO6:Eu3+ was obtained after calcination at 1100 °C. Both materials displayed desirable optical properties for use as phosphors in white light-emitting diodes.

Graphical Abstract

Phase pure NaLa(WO4)(MoO4):Eu3+ and Ba2CaMoO6:Eu3+ red phosphor materials were synthesised by the modified Pechini route, thus permitting lower calcination temperatures which resulted in increased emission intensity for NaLa(WO4)(MoO4):Eu3+.


Pechini Phosphor WLED Ba2CaMoO6 NaLa(WO4)(MoO4Photoluminescence 



The work was funded by the Norwegian University of Science and Technology within the strategic research area Materials.


  1. 1.
    Xie A, Yuan XM, Hai SJ, Wang JJ, Wang FX, Li L (2009) Enhancement emission intensity of CaMoO4: Eu3+, Na+ phosphor via Bi co-doping and Si substitution for application to white LEDs. J Phys D Appl Phys 42(10):105107CrossRefGoogle Scholar
  2. 2.
    Zhu CQ, Xiao SG, Ding BW, Yang XL, Qiang RF (2008) Synthesis and photoluminescent properties of Eu3+-doped (1–x)CaO–xLi2O–WO3 phosphors. Mater Sci Eng B 150(2):95–98CrossRefGoogle Scholar
  3. 3.
    Neeraj S, Kijima N, Cheetham AK (2004) Novel red phosphors for solid-state lighting: the system NaM(WO4)2–x(MoO4)x: Eu3+ (M = Gd, Y, Bi). Chem Phys Lett 387(1–3):2–6CrossRefGoogle Scholar
  4. 4.
    Li L, Zhang J, Zi W, Gan S, Ji G, Zou H, Xu X (2014) Synthesis and luminescent properties of high brightness MRE(MoO4)2:Eu3+ (M = Li, Na, K; RE = Gd, Y, Lu) red phosphors for white LEDs. Solid State Sci 29:58–65CrossRefGoogle Scholar
  5. 5.
    Li LL, Liu L, Zi WW, Yu H, Gan SC, Ji GJ, Zou HF, Xu XC (2013) Synthesis and luminescent properties of high brightness MLa(WO4)2:Eu3+ (M = Li, Na, K) and NaRE(WO4)2:Eu3+ (RE = Gd, Y, Lu) red phosphors. J Lumin 143:14–20CrossRefGoogle Scholar
  6. 6.
    Li HY, Noh HM, Moon BK, Choi BC, Jeong JH, Jang K, Lee HS, Yi SS (2013) Wide-band excited Y6(WMo)0.5O12: Eu red phosphor for white light emitting diode: structure evolution, photoluminescence properties, and energy transfer mechanisms involved. Inorg Chem 52(19):11210–11217CrossRefGoogle Scholar
  7. 7.
    Li H, Yang HK, Moon BK, Choi BC, Jeong JH, Jang K, Lee HS, Yi SS (2011) Crystal structure, electronic structure, and optical and photoluminescence properties of Eu(III) ion-doped Lu6Mo(W)O12. Inorg Chem 50(24):12522–12530CrossRefGoogle Scholar
  8. 8.
    Li H, Yang HK, Moon BK, Choi BC, Jeong JH, Jang K, Lee HS, Yi SS (2011) Investigation of the structure and photoluminescence properties of Eu3+ion-activated Y6WxMo1-xO12. J Mater Chem 21(12):4531–4537CrossRefGoogle Scholar
  9. 9.
    Tian Y, Chen BJ, Hua RN, Zhong HY, Cheng LH, Sun JS, Lu WL, Wan J (2009) Synthesis and characterization of novel red emitting nanocrystal Gd6WO12:Eu3+ phosphors. Phys B 404(20):3598–3601CrossRefGoogle Scholar
  10. 10.
    Ye S, Li YJ, Yu DC, Yang ZM, Zhang QY (2011) Structural effects on Stokes and anti-Stokes luminescence of double-perovskite (Ba, Sr)2CaMoO6: Yb3+, Eu3+. J Appl Phys 110(1):013517CrossRefGoogle Scholar
  11. 11.
    Sivakumar V, Varadaraju UV (2006) A promising orange-red phosphor under near UV excitation. Electrochem Solid State Lett 9(6):H35–H38CrossRefGoogle Scholar
  12. 12.
    Sivakumar V, Varadaraju UV (2007) An orange-red phosphor under near-UV excitation for white light emitting diodes. J Electrochem Soc 154(1):J28–J31CrossRefGoogle Scholar
  13. 13.
    Sivakumar V, Varadaraju UV (2008) Synthesis, phase transition and photoluminescence studies on Eu3+-substituted double perovskites—A novel orange-red phosphor for solid-state lighting. J Solid State Chem 181(12):3344–3351CrossRefGoogle Scholar
  14. 14.
    Lei F, Yan B (2008) Synthesis and photoluminescence of perovskite-type Ca2MgWO6: Eu3+ micrometer phosphor. J Optoelectron Adv Mater 10(1):158–163Google Scholar
  15. 15.
    Li S, Wei XT, Deng KM, Tian XN, Qin YG, Chen YH, Yin M (2013) A new red-emitting phosphor of Eu3+-doped Sr2MgMoxW1–xO6 for solid state lighting. Curr Appl Phys 13(7):1288–1291CrossRefGoogle Scholar
  16. 16.
    Zhang L, Han P, Han Y, Lu Z, Yang H, Wang L, Zhang Q (2013) Structure evolution and tunable luminescence of (Sr0.98−mBamEu0.02)2Ca(Mo1−nWn)O6 phosphor with ultraviolet excitation for white LEDs. J Alloys Compd 558:229–235CrossRefGoogle Scholar
  17. 17.
    Ye S, Wang CH, Liu ZS, Lu J, Jing XP (2008) Photoluminescence and energy transfer of phosphor series Ba2-zSrzCaMo1yWyO6:Eu, Li for white light UVLED applications. Appl Phys B 91(3–4):551–557CrossRefGoogle Scholar
  18. 18.
    Ye S, Wang C-H, Jing X-P (2008) Photoluminescence and raman spectra of double-Perovskite Sr2Ca(Mo/W)O6 with A- and B-site substitutions of Eu3+. J Electrochem Soc 155(6):J148–J151CrossRefGoogle Scholar
  19. 19.
    Wang Z, Liang H, Gong M, Su Q (2007) Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure. J Alloys Compd 432(1–2):308–312CrossRefGoogle Scholar
  20. 20.
    Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater Sci Eng R 71(1):1–34CrossRefGoogle Scholar
  21. 21.
    Zalga A, Moravec Z, Pinkas J, Kareiva A (2011) On the sol-gel preparation of different tungstates and molybdates. J Therm Anal Calorim 105(1):3–11CrossRefGoogle Scholar
  22. 22.
    Cao FB, Li LS, Tian YW, Chen YJ, Wu XR (2011) Investigation of red-emission phosphors (Ca, Sr)(Mo, W)O:Eu3+ crystal structure, luminous characteristics and calculation of Eu3+ 5D0 quantum efficiency. Thin Solid Films 519(22):7971–7976CrossRefGoogle Scholar
  23. 23.
    Lei JL, Yu Y, Li LJ, Cheng SB, Li GY, Li NB (2012) Synthesis of LiEu1−xBix(MoO4)2 red phosphors by sol–gel method and their luminescent properties. J Rare Earths 30(4):330–334CrossRefGoogle Scholar
  24. 24.
    Cao F-B, Li L-S, Tian Y-W, Gao Z-F, Chen Y-J, Xiao L-J, Wu X-R (2011) Sol–gel synthesis of red-phosphors [NaxGd1−x/3−zEuz]MoyW1−yO4 powers and luminescence properties. Opt Mater 33(6):751–754CrossRefGoogle Scholar
  25. 25.
    Xie H, Li F, Xi H, Tian R, Wang X (2015) Luminescent properties of sol–gel processed red-emitting phosphor Eu3+, Bi3+ co-doped (Ca, Sr)(Mo, W)O4. J Mater Sci Mater Electron 26(1):23–31CrossRefGoogle Scholar
  26. 26.
    Zhai Y, Li J, Li X, Dong Y, Wang Y, Song S (2015) Synthesis and luminescent properties of NaLa(MoO4)2:Eu3+, Tb3+ phosphors by microwave-assisted sol–gel method. J Sol Gel Sci Technol 74(2):544–549CrossRefGoogle Scholar
  27. 27.
    Li Y, Liu X (2015) Energy transfer and luminescence properties of Ba2CaMoO6:Eu3+ phosphors prepared by sol–gel method. Opt Mater 42:303–308CrossRefGoogle Scholar
  28. 28.
    Gil V, Strom RA, Groven LJ, Einarsrud MA (2012) La28-xW4+xO54+3x/2 powders prepared by spray pyrolysis. J Am Ceram Soc 95(11):3403–3407CrossRefGoogle Scholar
  29. 29.
    Sletnes M (2014) Wet chemical synthesis of silicon nanoparticles and phosphorescent oxides for white light emitting diodes. PhD Thesis. Norwegian University of Science and Technology, TrondheimGoogle Scholar
  30. 30.
    Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982CrossRefGoogle Scholar
  31. 31.
    Li H, Hong G, Yue S (1990) Crystal study of NaLn(WO4)2 (Ln = La, Pr, Nd). Zhongguo Xitu Xuebao (J Chin Rare Earth Soc) 8:37–41Google Scholar
  32. 32.
    Teller R (1992) Refinement of some Na0.5-xM’0.5 + x/3[]2x/3MoO4, M’ = Bi, Ce, La, scheelite structures with powder neutron and X-ray diffraction data. Acta Crystallogr C 48(12):2101–2104CrossRefGoogle Scholar
  33. 33.
    Steward EG, Rooksby HP (1951) Pseudo-cubic Alkaline-earth Tungstates and Molybdates of the R3MX6 Type. Acta Crystallogr 4(6):503CrossRefGoogle Scholar
  34. 34.
    Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels of trivalent lanthanide aquo ions. 4. Eu3+. J Chem Phys 49(10):4450CrossRefGoogle Scholar
  35. 35.
    Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37(3):511–520CrossRefGoogle Scholar
  36. 36.
    Sadun C, Bucci R, Magri AL (2002) Structural analysis of the solid amorphous binuclear complexes of iron(III) and aluminum(III) with chromium(III)-DTPA chelator using energy dispersive X-ray diffraction. J Am Chem Soc 124(12):3036–3041CrossRefGoogle Scholar
  37. 37.
    Silva VL, Carvalho R, Freitas MP, Tormena CF, Melo WC (2007) Structural determination of Zn and Cd-DTPA complexes: MS, infrared, C-13 NMR and theoretical investigation. Spectrochim Acta A 68(5):1197–1200CrossRefGoogle Scholar
  38. 38.
    Abdullah NA, Hasan S, Osman N (2013 Article ID 908340) Role of CA–EDTA on the Synthesizing Process of Cerate-Zirconate Ceramics Electrolyte. J Chem 7Google Scholar
  39. 39.
    Ding XF, Liu YJ, Gao L, Guo L (2008) Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA-citrate complexing method. J Alloys Compd 458(1–2):346–350CrossRefGoogle Scholar
  40. 40.
    Feldhoff A, Arnold M, Martynczuk J, Gesing TM, Wang H (2008) The sol-gel synthesis of perovskites by an EDTA/citrate complexing method involves nanoscale solid state reactions. Solid State Sci 10(6):689–701CrossRefGoogle Scholar
  41. 41.
    Jeong C, Ryu J, Noh T, Kim YN, Lee H (2013) Structural analysis and electrode performance of Ce doped SrMnO3 synthesised by EDTA citrate complexing process. Adv Appl Ceram 112(8):494–498CrossRefGoogle Scholar
  42. 42.
    Patra H, Rout SK, Pratihar SK, Bhattacharya S (2011) Effect of process parameters on combined EDTA-citrate synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite. Powder Technol 209(1–3):98–104CrossRefGoogle Scholar
  43. 43.
    Prasad DH, Park SY, Oh EO, Ji H, Kim HR, Yoon KJ, Son JW, Lee JH (2012) Synthesis of nano-crystalline La1-xSrxCoO3-δ perovskite oxides by EDTA-citrate complexing process and its catalytic activity for soot oxidation. Appl Catal A 447:100–106CrossRefGoogle Scholar
  44. 44.
    Smet PF, Parmentier AB, Poelman D (2011) Selecting conversion phosphors for white light-emitting diodes. J Electrochem Soc 158(6):R37–R54CrossRefGoogle Scholar
  45. 45.
    Martell AE, Motekaitis RJ, Smith RM Critically selected stability constants of metal complexes database: Version 8. (NIST Database 46). 4th May 2014

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. Sletnes
    • 1
  • S. L. Skjærvø
    • 1
  • M. Lindgren
    • 2
  • T. Grande
    • 1
  • M.-A. Einarsrud
    • 1
  1. 1.Department of Materials Science and EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations