Skip to main content
Log in

Preparation and characterization of flexible and thermally stable CuO nanocrystal-decorated SiO2 nanofibers

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanofibers functionalized by semiconductor nanocrystals are drawing increasing interest, due to their widespread applications in the fields of new energy development, environment protection and chemical sensing, etc. Herein, we demonstrate a simple approach to prepare CuO/SiO2 nanocomposite materials. The flexible SiO2 nanofibers were prepared via the sol–gel electrospinning techniques. CuO nanocrystals were grafted on the surface of SiO2 nanofibers by simply soaking and post-calcination. Micromorphology, structure and mechanical strength of SiO2/CuO nanocomposite fibers were investigated by SEM, TEM and stress–strain test. Photocatalytic water purification ability of SiO2/CuO nanofibers was evaluated by employing rhodamine B as a model pollutant. Our results indicated that the SiO2/CuO nanofibers were flexible, thermally resistant and photocatalytic reactive, which promise the potential application in environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wold A (1993) Chem Mater 5:280–283

    Article  Google Scholar 

  2. Zhang Z, Shao C, Li X, Sun Y, Zhang M, Mu J, Zhang P, Guo Z, Liu Y (2012) Nanoscale 5:606–618

    Article  Google Scholar 

  3. Zhang X, Li X, Shao C, Li J, Zhang M, Zhang P, Wang K, Lu N, Liu Y (2013) J Hazard Mater 260:892–900

    Article  Google Scholar 

  4. Zhang Y, Liu S, Xiu Z, Lu Q, Sun H, Liu G (2014) J Nanopart Res 16:2375

    Article  Google Scholar 

  5. Babu VJ, Kumar MK, Nair AS, Kheng TL, Allakhverdiev SI, Ramakrishna S (2012) Int J Hydrog Energy 37:8897–8904

    Article  Google Scholar 

  6. Kim CH, Kim B, Yang KS (2012) Carbon 50:2472–2481

    Article  Google Scholar 

  7. Sahay R, Kumar PS, Sridhar R, Sundaramurthy J, Venugopal J, Mhaisalkar SG, Ramakrishna S (2012) J Mater Chem 22:12953

    Article  Google Scholar 

  8. Han L, Andrady AL, Ensor DS (2013) Sens Actuators B Chem 186:52–55

    Article  Google Scholar 

  9. Bandara J, Udawatta CPK, Rajapakse CSK (2005) Photochem Photobiol Sci 4:857

    Article  Google Scholar 

  10. Yang C, Su X, Xiao F, Jian J, Wang J (2011) Sens Actuators B Chem 158:299–303

    Article  Google Scholar 

  11. Dar MA, Kim YS, Kim WB, Sohn JM, Shin HS (2008) Appl Surf Sci 254:7477–7481

    Article  Google Scholar 

  12. Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) J Phys Chem B 108:5547–5551

    Article  Google Scholar 

  13. Wang H, Pan Q, Zhao J, Yin G, Zuo P (2007) J Power Sources 167:206–211

    Article  Google Scholar 

  14. Anandan S, Wen X, Yang S (2005) Mater Chem Phys 93:35–40

    Article  Google Scholar 

  15. Sahay R, Sundaramurthy J, Kumar PS, Thavasi V, Mhaisalkar SG, Ramakrishna S (2012) J Solid State Chem 186:261–267

    Article  Google Scholar 

  16. Chen Y, Tao X, Min Y, Zheng F (2013) J Mater Sci Mater Electron 24:1319–1324

    Article  Google Scholar 

  17. Huang J, Fu G, Shi C, Wang X, Zhai M, Gu C (2014) J Phys Chem Solids 75:1011–1016

    Article  Google Scholar 

  18. Li J, Sun F, Gu K, Wu T, Zhai W, Li W, Huang S (2011) Appl Catal A Gen 406:51–58

    Article  Google Scholar 

  19. Zhao Y, Shi H, Chen M, Teng F (2014) Cryst Eng Commun 16:2417

    Article  Google Scholar 

  20. Sathyamoorthy R, Mageshwari K (2013) Physica E 47:157–161

    Article  Google Scholar 

  21. Rabbani M, Rahimi R, Bozorgpour M, Shokraiyan J, Moghaddam SS (2014) Mater Lett 119:39–42

    Article  Google Scholar 

  22. Umadevi M, Christy AJ (2013) Spectrochim Acta A 109:133–137

    Article  Google Scholar 

  23. Im JS, Kim MI, Lee Y (2008) Mater Lett 62:3652–3655

    Article  Google Scholar 

  24. Lee JA, Krogman KC, Ma M, Hill RM, Hammond PT, Rutledge GC (2009) Adv Mater 21:1252–1256

    Article  Google Scholar 

  25. Guan H, Shao C, Chen B, Gong J, Yang X (2003) Inorg Chem Commun 6:1409–1411

    Article  Google Scholar 

  26. Lee SS, Bai H, Liu Z, Sun DD (2013) Water Res 47:4059–4073

    Article  Google Scholar 

  27. Zhao Y, He X, Li J, Gao X, Jia J (2012) Sens Actuators B Chem 165:82–87

    Article  Google Scholar 

  28. Ma Z, Ji H, Teng Y, Dong G, Zhou J, Tan D, Qiu J (2011) J Colloid Interface Sci 358:547–553

    Article  Google Scholar 

  29. Wu JH, Li XS, Zhao Y, Gao Q, Guo L, Feng YQ (2010) Chem Commun 46:9031–9033

    Article  Google Scholar 

  30. Guo M, Ding B, Li XH, Wang XL, Yu JY, Wang MR (2010) J Phys Chem C 114:916–921

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grants Nos. 51132004, 51302087), and Fundamental Research Funds for the Central Universities (Grants No. 2014ZM0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Ma or Jianrong Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Ma, Z., He, X. et al. Preparation and characterization of flexible and thermally stable CuO nanocrystal-decorated SiO2 nanofibers. J Sol-Gel Sci Technol 76, 492–500 (2015). https://doi.org/10.1007/s10971-015-3799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3799-9

Keywords

Navigation