Skip to main content

Simultaneous DLS–SLS study of titanium and titanium/silicon oxide sol growth

An Erratum to this article was published on 21 April 2017

Abstract

A commercial DLS setup was used for simultaneous DLS/SLS analysis of sol growth of titanium and titanium/silicon oxides. The scattering data were analyzed in dynamic and static modes which allowed evaluating particle size and concentration simultaneously. A binary solvent (acetone/ethanol mixture) was introduced which effectively controls monodisperse growth behavior by simply adjusting its ratio. Fixing the solvent composition to the ratio which delayed gelation the most, the effect of the amount of catalyst (acetic acid), hydrolyzing agent (water) and titanium oxide precursor (titanium tetraisopropoxide) on growth kinetics were studied. Taking the advantage of extra functionalities of the catalyst used, acetic acid, i.e., decreasing the reactivity of titanium tetraisopropoxide and increasing the reactivity of tetraethyl orthosilicate, hybrid titanium/silicon oxide growth was also studied. Here, we step-by-step showed that particle size, particle concentration and sol-to-gel transition time of titanium and titanium/silicon oxide systems can be well controlled by adjusting the composition of formulations in ambient conditions. We also showed how practical the laser light scattering is to evaluate even the early onsets of growth profiles long before visual identification of clouding. The findings reported here are particularly important for practical applications of sol–gel technology where the control of particle size/concentration and gelation time is advantageous.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Caruso RA, Antonietti M (2001) Sol–gel nanocoating: an approach to the preparation of structured materials. Chem Mater 13:3272–3282. doi:10.1021/cm001257z

    Article  Google Scholar 

  2. 2.

    Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686. doi:10.1007/s10853-011-5378-y

    Article  Google Scholar 

  3. 3.

    Detty MR, Ciriminna R, Bright FV, Pagliaro M (2014) Environmentally benign sol–gel antifouling and foul-releasing coatings. Acc Chem Res 47:678–687. doi:10.1021/ar400240n

    Article  Google Scholar 

  4. 4.

    Litzov I, Brabec C (2013) Development of efficient and stable inverted bulk heterojunction (BHJ) solar cells using different metal oxide interfaces. Materials (Basel) 6:5796–5820. doi:10.3390/ma6125796

    Article  Google Scholar 

  5. 5.

    Warren SC, Perkins MR, Adams AM et al (2012) A silica sol–gel design strategy for nanostructured metallic materials. Nat Mater 11:460–467. doi:10.1038/nmat3274

    Article  Google Scholar 

  6. 6.

    Ciriminna R, Fidalgo A, Pandarus V et al (2013) The sol–gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620. doi:10.1021/cr300399c

    Article  Google Scholar 

  7. 7.

    Certhoux E, Ansart F, Turq V et al (2013) New sol–gel formulations to increase the barrier effect of a protective coating against the corrosion of steels. Prog Org Coat 76:165–172. doi:10.1016/j.porgcoat.2012.09.002

    Article  Google Scholar 

  8. 8.

    Najafabadi AH, Mozaffarinia R, Rahimi H et al (2013) Sol–gel processing of hybrid nanocomposite protective coatings using experimental design. Prog Org Coat 76:293–301. doi:10.1016/j.porgcoat.2012.09.027

    Article  Google Scholar 

  9. 9.

    Kim K-S, Kim J-K, Kim W-S (2002) Influence of reaction conditions on sol-precipitation process producing silicon oxide particles. Ceram Int 28:187–194. doi:10.1016/S0272-8842(01)00076-1

    Article  Google Scholar 

  10. 10.

    Simonsen ME, Søgaard EG (2010) Sol–gel reactions of titanium alkoxides and water: influence of pH and alkoxy group on cluster formation and properties of the resulting products. J Sol-gel Sci Technol 53:485–497. doi:10.1007/s10971-009-2121-0

    Article  Google Scholar 

  11. 11.

    Fujii T, Yano T, Nakamura K, Miyawaki O (2001) The sol–gel preparation and characterization of nanoporous silica membrane with controlled pore size. J Memb Sci 187:171–180. doi:10.1016/S0376-7388(01)00338-6

    Article  Google Scholar 

  12. 12.

    Rupcich N, Goldstein A, Brennan JD (2003) Optimization of sol–gel formulations and surface treatments for the development of pin-printed protein microarrays. Chem Mater 15:1803–1811. doi:10.1021/cm030028k

    Article  Google Scholar 

  13. 13.

    Alphonse P, Varghese A, Tendero C (2010) Stable hydrosols for TiO2 coatings. J Sol-gel Sci Technol 56:250–263. doi:10.1007/s10971-010-2301-y

    Article  Google Scholar 

  14. 14.

    Nobbmann U, Connah M, Fish B et al (2007) Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies. Biotechnol Genet Eng Rev 24:117–128. doi:10.1080/02648725.2007.10648095

    Article  Google Scholar 

  15. 15.

    Brar SK, Verma M (2011) Measurement of nanoparticles by light-scattering techniques. Trends Anal Chem 30:4–17. doi:10.1016/j.trac.2010.08.008

    Article  Google Scholar 

  16. 16.

    Byers CH, Harris MT, Williams DF (1987) Controlled microcrystalline growth studies by dynamic laser-light-scattering methods. Ind Eng Chem Res 26:1916–1923. doi:10.1021/ie00069a033

    Article  Google Scholar 

  17. 17.

    Harris MT, Byers CH, Brunson RR (1988) A study of solvent effects on the synthesis of pure component and composite ceramic powders by metal alkoxide hydrolysis. MRS Proc 121:287. doi:10.1557/PROC-121-287

    Article  Google Scholar 

  18. 18.

    Harris MT, Byers CH (1988) Effect of solvent on the homogeneous precipitation of titania by titanium ethoxide hydrolysis. J Non Cryst Solids 103:49–64. doi:10.1016/0022-3093(88)90415-2

    Article  Google Scholar 

  19. 19.

    Wu K-T, Spencer HG (1998) Sol formation rates in acid catalyzed titanium isopropoxide water reaction in isopropanol. J Non Cryst Solids 226:249–255. doi:10.1016/S0022-3093(98)00441-4

    Article  Google Scholar 

  20. 20.

    Ågren P, Counter J, Laggner P (2000) A light and X-ray scattering study of the acid catalyzed silica synthesis in the presence of polyethylene glycol. J Non Cryst Solids 261:195–203. doi:10.1016/S0022-3093(99)00590-6

    Article  Google Scholar 

  21. 21.

    Ziemath EC, Pretti WL, Aegerter MA et al (1988) Light scattering dynamic study of the gelation process. J Non Cryst Solids 100:211–214. doi:10.1016/0022-3093(88)90019-1

    Article  Google Scholar 

  22. 22.

    Harris MT, Brunson RR, Byers CH (1990) The base-catalyzed hydrolysis and condensation reactions of dilute and concentrated TEOS solutions. J Non Cryst Solids 121:397–403. doi:10.1016/0022-3093(90)90165-I

    Article  Google Scholar 

  23. 23.

    Lee DH, Han SW, Kang DP (2015) Size change of silica nanoparticles induced by non-alcoholic solvent addition during sol–gel reaction. J Sol-gel Sci Technol 74:78–83. doi:10.1007/s10971-014-3579-y

    Article  Google Scholar 

  24. 24.

    Martin J, Keefer K (1986) Scattering below the sol–gel transition. Phys Rev A 34:4988–4992. doi:10.1103/PhysRevA.34.4988

    Article  Google Scholar 

  25. 25.

    Moreira JE, Cesar ML, Aegerter MA (1990) Light scattering of silica particles in solution. J Non Cryst Solids 121:394–396. doi:10.1016/0022-3093(90)90164-H

    Article  Google Scholar 

  26. 26.

    Bartlett J, Woolfrey J, Percy M (1994) Kinetics of colloid formation during the preparation of sol–gel zirconia. J Sol-gel Sci Technol 220:215–220

    Article  Google Scholar 

  27. 27.

    Fuierer PA, Li B, Jeon HS (2003) Characterization of particle size and shape in an ageing bismuth titanate sol using dynamic and static light scattering. J Sol-gel Sci Technol 27:185–192. doi:10.1023/A:1023754718688

    Article  Google Scholar 

  28. 28.

    Kaszuba M (1999) The measurement of nanoparticles using photon correlation spectroscopy and avalanche photo diodes. J Nanopart Res 1:405–409. doi:10.1023/A:1010072129578

    Article  Google Scholar 

  29. 29.

    Malvern Instruments Ltd. Dynamic light scattering: an introduction in 30 minutes (Technical Note: MRK656-01).

  30. 30.

    Yoldas BE (1980) Formation of titania–silica glasses by low temperature chemical polymerization. J Non Cryst Solids 38–39:81–86. doi:10.1016/0022-3093(80)90398-1

    Article  Google Scholar 

  31. 31.

    Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol–gel approach. Chem Mater 8:1667–1681. doi:10.1021/cm9601143

    Article  Google Scholar 

  32. 32.

    Doeuff S, Henry M, Sanchez C, Livage J (1987) Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Non Cryst Solids 89:206–216. doi:10.1016/S0022-3093(87)80333-2

    Article  Google Scholar 

  33. 33.

    Sanchez C, Livage J, Henry M, Babonneau F (1988) Chemical modification of alkoxide precursors. J Non Cryst Solids 100:65–76. doi:10.1016/0022-3093(88)90007-5

    Article  Google Scholar 

  34. 34.

    Pope EJA, Mackenzie JD (1986) Sol–gel processing of silica: II. The role of the catalyst. J Non Cryst Solids 87:185–198. doi:10.1016/S0022-3093(86)80078-3

    Article  Google Scholar 

  35. 35.

    Artaki I, Zerda TW, Jonas J (1986) Solvent effects on the condensation stage of the sol–gel process. J Non Cryst Solids 81:381–395. doi:10.1016/0022-3093(86)90504-1

    Article  Google Scholar 

  36. 36.

    Van Blaaderen A, Van Geest J, Vrij A (1992) Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. J Colloid Interface Sci 154:481–501. doi:10.1016/0021-9797(92)90163-G

    Article  Google Scholar 

  37. 37.

    Sadasivan S, Dubey AK, Li Y, Rasmussen DH (1998) Alcoholic solvent effect on silica synthesis—NMR and DLS investigation. J Sol-gel Sci Technol 14:5–14

    Article  Google Scholar 

  38. 38.

    Mine E, Hirose M, Nagao D et al (2005) Synthesis of submicrometer-sized titania spherical particles with a sol–gel method and their application to colloidal photonic crystals. J Colloid Interface Sci 291:162–168. doi:10.1016/j.jcis.2005.04.077

    Article  Google Scholar 

  39. 39.

    Brinker CJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non Cryst Solids 100:31–50. doi:10.1016/0022-3093(88)90005-1

    Article  Google Scholar 

  40. 40.

    Pistoia G, Pecci G (1970) Ion-pair association of cesium and tetraethylammonium perchlorates in ethanol–acetone mixtures at 25°. J Phys Chem 74:1450–1454. doi:10.1021/j100702a010

    Article  Google Scholar 

  41. 41.

    Park JS, Hah HJ, Koo SM, Lee YS (2006) Effect of alcohol chain length on particle growth in a mixed solvent system. J Ceram Process Res 7:83–89

    Google Scholar 

  42. 42.

    Sakka S, Kamiya K (1980) Glasses from metal alcoholates. J Non Cryst Solids 42:403–421. doi:10.1016/0022-3093(80)90040-X

    Article  Google Scholar 

  43. 43.

    Yoldas BE (1986) Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J Mater Sci 21:1087–1092. doi:10.1007/BF01117399

    Article  Google Scholar 

  44. 44.

    Holland MA, Pickup DM, Mountjoy G et al (2000) Synthesis, characterisation and performance of (TiO2)0.18(SiO2)0.82 xerogel catalysts. J Mater Chem 10:2495–2501. doi:10.1039/b005408i

    Article  Google Scholar 

  45. 45.

    Torma V, Peterlik H, Bauer U et al (2005) Mixed silica titania materials prepared from a single-source sol–gel precursor: a time-resolved SAXS study of the gelation, aging, supercritical drying, and calcination processes. Chem Mater 17:3146–3153. doi:10.1021/cm047996n

    Article  Google Scholar 

  46. 46.

    Brinker CJ, Scherer GW (1985) Sol → gel → glass: I. Gelation and gel structure. J Non Cryst Solids 70:301–322. doi:10.1016/0022-3093(85)90103-6

    Article  Google Scholar 

  47. 47.

    Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72. doi:10.1021/cr00099a003

    Article  Google Scholar 

  48. 48.

    Branda F, Silvestri B, Luciani G, Costantini A (2007) The effect of mixing alkoxides on the Stöber particles size. Colloids Surf A Physicochem Eng Asp 299:252–255. doi:10.1016/j.colsurfa.2006.11.048a

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank A. Levent Demirel for access to laser light-scattering device used. Financial support for this work was provided by TÜBİTAK under grant number 109T893.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Özgür Birer.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10971-017-4390-3.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 150 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enis Karahan, H., Karakuş, K. & Birer, Ö. Simultaneous DLS–SLS study of titanium and titanium/silicon oxide sol growth. J Sol-Gel Sci Technol 76, 251–259 (2015). https://doi.org/10.1007/s10971-015-3772-7

Download citation

Keywords

  • Sol–gel technology
  • Laser light scattering
  • Modifying agent
  • Titanium oxide
  • Titanium/silicon hybrid oxide