Skip to main content
Log in

Enhanced photocatalytic activity of mesoporous SiO2/TiO2 sol–gel coatings doped with Ag nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, as-prepared silver nanoparticles have been incorporated into SiO2 and TiO2 sols. The characterisation of the silver nanoparticles was performed through transmission electron microscopy, grazing X-ray diffraction, and UV–visible spectroscopy, before and after mixing with the different sols. Multilayer coatings doped with silver nanoparticles were also prepared by combining different compositions and analysed by TEM and GXRD. The photocatalytic activity was studied through the degradation of methyl orange in aqueous solution under UV light exposure. High photocatalytic efficiency was observed for all the multilayer coatings. The highest efficiency was obtained for the Ag–SiO2/TiO2 mesoporous system that reached a degradation percentage of methyl orange up to 94 % after 2.5 h of irradiation, near the complete elimination of the pollutant. The mechanism that explains the high photocatalytic efficiency of this multilayer coating is associated with the high porosity of the mesoporous coatings and with the increase in the local electric field, associated with the effect of plasmon resonance surface produced for the presence of metallic silver nanoparticles in the SiO2 film.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li J, Zhang J (2009) Optical properties and applications of hybrid semiconductor nanomaterials. Coord Chem Rev 253:3015–3041

    Article  Google Scholar 

  2. Kamat PV, Vinodgopal K (1993) In: Ollis DF, Al-Ekabi H (eds) Photocatalytic purification and treatment of water and air. Elsevier Science, Amsterdam

    Google Scholar 

  3. Singh S, Mahalingam H, Singh P (2013) Polymer supported titanium dioxide photo-catalysts for environmental remediation. Appl Catal A Rev 462–463:178–195

    Article  Google Scholar 

  4. Mansfield CM, Alloy MM, Hamilton J, Verbeck GF, Newton K, Klaine SJ, Roberts AP (2015) Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight. Chemosphere 120:206–210

    Article  Google Scholar 

  5. Fujishima A, Hashimoto K, Watanabe K (1999) TiO2 photocatalysis fundaments and applications. University of Tokyo Published by BKC, Inc., Chiyoda-ku

    Google Scholar 

  6. Pichat P, Disdier J, Hoang-van C, Mas D, Goutailler G, Gaysse C (2000) Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal Today 63:363–369

    Article  Google Scholar 

  7. Yao L, He J (2014) Recent progress in antireflection and self-cleaning technology—from surface engineering to functional surfaces. Prog Mater Sci 61:94–143

    Article  Google Scholar 

  8. Chen J, Poon C (2009) Methods for air cleaning and protection of building occupants from airborne pathogens. Build Environ 44:1899–1906

    Article  Google Scholar 

  9. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  Google Scholar 

  10. Linsebigle A, Lu G, Yates J (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  11. Nakajima A, Koizumi S, Watanabe T, Hashimoto K (2001) Effect of repeated photo-illumination on the wettability conversion of titanium dioxide. J Photochem Photobiol, A 146:129–132

    Article  Google Scholar 

  12. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C: Photochem Rev 15:1–20

    Article  Google Scholar 

  13. Okamoto K, Yamamoto Y, Tanaka H, Itaya A (1985) Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder. Chem Soc Jpn 58:2015–2022

    Article  Google Scholar 

  14. Arconada N, Castro Y, Durán A (2010) Photocatalytic properties in aqueous solution of porous TiO2 anatase films prepared by sol–gel process. Appl Catal A 385:101–107

    Article  Google Scholar 

  15. Padikkaparambil S, Yaakob Z, Narayanan BN, Ramakrishnan R, Viswanathan S (2012) Novel preparation method of nanosilver doped sol gel TiO2 photocatalysts for dye pollutant degradation. J Sol-Gel Sci Technol 63:108–115

    Article  Google Scholar 

  16. Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46:1940–1945

    Article  Google Scholar 

  17. Chen H, Nanayakkara C, Grassian V (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112:5919–5948

    Article  Google Scholar 

  18. Abou-Helal MO, Seeber WT (2002) Preparation of TiO2 thin films by spray pyrolysis to be used as a photocatalyst. Appl Surf Sci 195:53–62

    Article  Google Scholar 

  19. Wang X, Shi F, Gao X, Fanb C, Huang W, Feng X (2013) A sol–gel dip/spin coating method to prepare titanium oxide films. Thin Solid Films 548:34–39

    Article  Google Scholar 

  20. Zheng SK, Wang TM, Xiang G, Wang C (2001) Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method. Vacuum 62:361–366

    Article  Google Scholar 

  21. Lorenzetti M, Biglino D, Novak S, Kobe S (2014) Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater Sci Eng, C 37:390–398

    Article  Google Scholar 

  22. Paily R, DasGupta A, DasGupta N (2002) Pulsed laser deposition of TiO2 for MOS gate dielectric. Appl Surf Sci 187:297–304

    Article  Google Scholar 

  23. Aarik J, Aidla A, Uustare T, Kuklib K, Sammelselgc V, Ritalad M, Leskelä M (2002) Atomic layer deposition of TiO2 thin films from TiI4 and H2O. Appl Surf Sci 193:277–286

    Article  Google Scholar 

  24. Byun D, Jin Y, Kim B, Lee JK, Park D (2000) Photocatalytic TiO(2) deposition by chemical vapor deposition. J Hazard Mater 73:199–206

    Article  Google Scholar 

  25. Arabatzis IM, Antonaraki S, Stergiopoulos T, Hiskia A, Papaconstantinou E, Bernard MC, Falaras P (2002) Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2. J Photochem Photobiol A: Chem 149:237–245

    Article  Google Scholar 

  26. Arconada N, Castro Y, Durán A, Héquet V (2011) Photocatalytic oxidation of methyl ethyl ketone over sol–gel mesoporous and meso-structured TiO2 films obtained by EISA method. Appl Catal B: Environ 107:52–58

    Article  Google Scholar 

  27. Rayalua S, Josec D, Joshia M, Mangrulkara P, Shresthac K, Klabunde K (2014) Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: Enhancement in photocatalytic activity due to SPR effect. Appl Catal B: Environ 142:684–693

    Google Scholar 

  28. Wang X, Fan H, Ren P (2013) Self-assemble flower-like SnO2/Ag heterostructures: correlation among composition, structure and photocatalytic activity. Colloids Surf A: Phys Eng Asp 419:140–146

    Article  Google Scholar 

  29. Zhao B, Chen Y (2011) Ag/TiO2 sol prepared by a sol–gel method and its photocatalytic activity. J Phys Chem Solids 72:1312–1318

    Article  Google Scholar 

  30. Ismail A (2012) Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties. Microporous Mesoporous Mater 149:69–75

    Article  Google Scholar 

  31. Alem A, Sarpoolaky H (2010) The effect of silver doping on photocatalytic properties of titania multilayer membranes. Solid State Sci 12:1469–1472

    Article  Google Scholar 

  32. McEvoy JG, Zhang Z (2014) Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J Photochem Photobiol Rev 19:62–75

    Article  Google Scholar 

  33. Takai A, Kamat P (2011) Capture, store, and discharge. Shuttling photogenerated electrons across TiO2–silver interface. ACS Nano 5:7369–7376

    Article  Google Scholar 

  34. Bois L, Chassagneux F, Battie Y, Bessueille F, Mollet L, Parola S, Destouches N, Toulhoat N, Moncoffre N (2009) Chemical growth and photochromism of silver nanoparticles into a mesoporous titania template. Langmuir 26:1199–1206

    Article  Google Scholar 

  35. Cai W, Zhong H, Zhag L (1998) Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host. J Appl Phys 83:1705–1710

    Article  Google Scholar 

  36. Li X, Lenhart J (2012) Aggregation and dissolution of silver nanoparticles in natural surface water. Environ Sci Technol 46:5378–5386

    Article  Google Scholar 

  37. Akhavan O, Ghaderi E (2010) Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities. Surf Coat Technol 204:3676–3683

    Article  Google Scholar 

  38. Seery M, George R, Floris P, Pillai S (2007) Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A: Chem 189:258–263

    Article  Google Scholar 

  39. Rafiuddin ZZ (2012) Silver nanoparticles to self-assembled films: green synthesis and characterization. Colloids Surf B: Biointerfaces 90:48–52

    Article  Google Scholar 

  40. Al-Ghamdi HS, Mahmoud WE (2013) One pot synthesis of multi-plasmonic shapes of silver nanoparticles. Mater Lett 105:62–64

    Article  Google Scholar 

  41. Huang L, Zhai Y, Dong S, Wang J (2009) Efficient preparation of silver nanoplates assisted by non-polar solvents. J Colloid Interf Sci 331:384–388

    Article  Google Scholar 

  42. Roldán MV, Scaffardi LB, de Sanctis OA, Pellegri NS (2008) Optical properties and extinction spectroscopy to characterize the synthesis of amine capped silver nanoparticles. Mater Chem Phys 112:984–990

    Article  Google Scholar 

  43. Jeevanandam P, Srikanth C, Dixit S (2010) Synthesis of monodisperse silver nanoparticles and their self-assembly through simple thermal decomposition approach. Mater Chem Phys 122:402–407

    Article  Google Scholar 

  44. Kotakadi V, Rao Y, Gaddam S, Prasad T, Reddy A, Gopal Sai (2013) Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its anti-microbial activity. Colloids Surf B 105:194–198

    Article  Google Scholar 

  45. Zhang D, Liu X, Wang X, Yang X, Lu L (2011) Optical properties of monodispersed silver nanoparticles produced via reverse micelle microemulsion. Phys B 406:1389–1394

    Article  Google Scholar 

  46. Baek K, Kim J, Lee K, Ahnn H, Yoon C (2010) Surface plasmon resonance tuning of silver nanoparticle array produced by nanosphere lithography through ion etching and thermal annealing. J Nanosci Nanotechnol 10:3118–3122

    Article  Google Scholar 

  47. Wadkar M, Chaudhari V, Haram S (2006) Synthesis and characterization of stable organosols of silver nanoparticles by electrochemical dissolution of silver in DMSO. J Phys Chem B 110:20889–20894

    Article  Google Scholar 

  48. Roldán MV, de Sanctis O, Pellegri N (2013) Electrochemical method for Ag-PEG nanoparticles synthesis. J Nanoparticles 2013:524150–524157

    Article  Google Scholar 

  49. Bordenave M, Scarpettini A, Roldán M, Pellegri N, Bragas A (2013) Plasmon-induced photochemical synthesis of silver triangular prisms and pentagonal bipyramids by illumination with light emitting diodes. Mater Chem Phys 139:100–106

    Article  Google Scholar 

  50. Peng H, Yang A, Xiong J (2013) Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium. Carbohydr Polym 91:348–355

    Article  Google Scholar 

  51. Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152

    Article  Google Scholar 

  52. Roldán MV, de Oña P, Castro Y, Durán A, Faccendini P, Lagier C, Grau R, Pellegri N (2014) Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles. Mater Sci Eng, C 43:630–640

    Article  Google Scholar 

  53. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  Google Scholar 

  54. Evanoff D, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 6:1221–1231

    Google Scholar 

  55. Brinker CJ, Frye GC, Hurd AJ, Ashley CS (1997) Fundamentals of sol–gel dip coating. Thin Solid Films 201:97–108

    Article  Google Scholar 

  56. Nam H, Amemiya T, Murabayashi M, Itoh K (2004) Photocatalytic activity of sol–gel TiO2 thin films on various kinds of glass substrates: the effects of Na+ and primary particle size. J Phys Chem B 108:8254–8259

    Article  Google Scholar 

  57. Boissiere C, Grosso D, Lepoutre S, Nicole L, Bruneau AB, Sanchez C (2005) Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir 21:12362–12371

    Article  Google Scholar 

  58. Martínez S, Serrano T, Gómez I, Hernández A (2007) Síntesis y caracterización de nanoparticulas de CdS obtenidas por Microondas. Bol Soc Esp Ceram Vidr 46:97–101

    Article  Google Scholar 

  59. Fernández A, Lassaletta G, Jiménez VM, Justo A, González-Elipe A, Herrmann JM, Tahiri H, Ait-Ichou Y (1995) Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl Catal B: Environ 7:49–63

    Article  Google Scholar 

  60. Nocuń M, Burcon D, Siwulski S (2008) Sodium diffusion barrier coatings prepared by sol–gel method. Opt Appl XXXVIII:172–179

    Google Scholar 

  61. Novotna P, Krysa J, Maixner J, Kluson P, Novak P (2010) Photocatalytic activity of sol–gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer. Surf Coat Technol 204:2570–2575

    Article  Google Scholar 

  62. Shi J, Chen J, Feng Z, Lian Y, Wang X, Li C (2007) Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C 111:693–699

    Article  Google Scholar 

  63. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  Google Scholar 

  64. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2009) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680

    Article  Google Scholar 

  65. Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticle. J Am Ceram Soc 129:14852–14853

    Google Scholar 

  66. Naceur BJ, Gaidi M, Bousbih F, Mechiakh R, Chtourou R (2012) Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sol–gel technique. Curr Appl Phys 12:422–428

    Article  Google Scholar 

  67. Bose R, Kumar R, Sudheer S, Reddy V, Ganesan V, Pillai V (2012) Effect of silver incorporation in phase formation and band gap tuning of tungsten oxide thin film. J Appl Phys 112:114311–114319

    Article  Google Scholar 

  68. Lalueza P, Monzon M, Arruebo M, Santamaría J (2011) Bactericidal effects of different silver-containing materials. Mater Res Bull 46:2070–2076

    Article  Google Scholar 

Download references

Acknowledgments

V.R. acknowledges CONICET for the postdoctoral scholarship. The authors thank Antonio Tomás, Laura Peláez, and Aritz Iglesias for their assistance with the experimental techniques and Alejandro Olivieri for providing the spectrofluorophotometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roldán, M.V., Castro, Y., Pellegri, N. et al. Enhanced photocatalytic activity of mesoporous SiO2/TiO2 sol–gel coatings doped with Ag nanoparticles. J Sol-Gel Sci Technol 76, 180–194 (2015). https://doi.org/10.1007/s10971-015-3765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3765-6

Keywords

Navigation