Skip to main content
Log in

Fabrication of filter paper with tunable wettability and its application in oil–water separation

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Artificial materials with controllable wettability are of global interests in oil–water related applications. In the present report, a surface with superhydrophilicity/superoleophilicity and underwater superoleophobicity was constructed on filter paper via dip-coating ZnO colloids. However, the wettability of the filter paper was converted to be superhydrophobic and superoleophilic after being modified by octyltrimethoxysilane, and water contact angle on the surface is larger than 150° while oil contact angle is smaller than 5°. The filter paper can be employed to selectively adsorb oil floating on water or separate water–oil mixtures via filtration process because of its superhydrophobicity and superoleophilicity. Additionally, the filter paper has also the capacity to hold water, which is expected to be used as a material for manufacturing labwares.

Graphical Abstract

A filter paper with superhydrophobicity and superoleophilicity was fabricated by dip-coating and subsequent modification. Water contact angle and sliding angle on the filter paper are 157°and 6°, respectively. The filter paper with superhydrophobicity and superoleophilicity could be employed to separate oil–water mixture with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang C-F, Tzeng F-S, Chen H-G, Chang C-J (2012) Langmuir 28:10015–10019

    Article  Google Scholar 

  2. Kobaku SPR, Kota AK, Lee DH, Mabry JM, Tuteja A (2012) Patterned superomniphobic–superomniphilic surfaces: templates for site-selective self-assembly. Angew Chem Int Ed 51:10109–10113

    Article  Google Scholar 

  3. Wang B, Liang W, Guo Z, Liu W (2015) Chem Soc Rev 44:336–361

    Article  Google Scholar 

  4. Chu Z, Feng Y, Seeger S (2014) Angew Chem Int Ed 53:2–13

    Article  Google Scholar 

  5. Tian Y, Bin S, Jiang L (2014) Adv Mater 26:6872–6897

    Article  Google Scholar 

  6. Yao X, Song Y, Jiang L (2011) Adv Mater 23:719–734

    Article  Google Scholar 

  7. Wang F, Lei S, Xue M, Junfei O, Li W (2014) Langmuir 30:1281–1289

    Article  Google Scholar 

  8. Yang J, Zhang Z, Xianghui X, Zhu X, Men X, Zhou X (2012) J Mater Chem 22:2834–2837

    Article  Google Scholar 

  9. Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013) Adv Mater 25:4192–4198

    Article  Google Scholar 

  10. Zhou X, Zhang Z, Xianghui X, Guo F, Men X, Ge B (2013) ACS Appl Mater Interfaces 5:7208–7214

    Article  Google Scholar 

  11. Zhou X, Zhang Z, Xianghui X, Men X, Zhu X (2013) Ind Eng Chem Res 52:9411–9416

    Article  Google Scholar 

  12. Zeng J, Guo Z (2014) Sol-Gel Surf A Physicochem Eng Asp 444:283–288

    Article  Google Scholar 

  13. Wang S, Li M, Lu Q (2010) ACS Appl Mater Interfaces 2:677–683

    Article  Google Scholar 

  14. Chuan D, Wang J, Chen Z, Chen D (2014) Appl Surf Sci 313:304–310

    Article  Google Scholar 

  15. Jin C, Yan R, Huang J (2011) J Mater Chem 21:17519–17525

    Article  Google Scholar 

  16. Huang J, Yuanqing G (2011) Curr Opin Colloid Interface Sci 16:470–481

    Article  Google Scholar 

  17. Li S, Wei Y, Huang J (2010) Chem Lett 39:20–21

    Article  Google Scholar 

  18. Obeso CG, Sousa MP, Song W, Rodriguez-Pérez MA, Bhushan B, Mano JF (2013) Sol-Gel Surf A Physicochem Eng Asp 416:51–55

    Article  Google Scholar 

  19. Ogihara H, Xie J, Saji T (2013) Sol–Gel Surf A Physicochem Eng Asp 434:35–41

    Article  Google Scholar 

  20. Sousa MP, Mano JF (2013) ACS Appl Mater Interfaces 5:3731–3737

    Article  Google Scholar 

  21. Mates JE, Schutzius TM, Bayer IS, Qin J, Waldroup DE, Megaridis CM (2014) Ind Eng Chem Res 53:222–227

    Article  Google Scholar 

  22. Wang ZL (2004) J Phys: Condens Matter 16:R829–R858

    Google Scholar 

  23. Spanhel L, Anderson MA (1991) J Am Chem Soc 113:2826–2833

    Article  Google Scholar 

  24. Chu Z, Seeger S (2014) Chem Soc Rev 43:2784–2798

    Article  Google Scholar 

  25. Teisala H, Tuominen M, Kuusipalo J (2014) Adv Mater Interfaces 1:1300026 (1–20)

    Article  Google Scholar 

  26. Bixler GD, Bhushan B (2013) Nanoscale 5:7685–7710

    Article  Google Scholar 

  27. Teng C, Lu X, Ren G, Zhu Y, Wan M, Jiang L (2014) Adv Mater Interfaces 1:1400099(1–5)

    Article  Google Scholar 

  28. Liu Q, Patel AA, Liu L (2014) ACS Appl Mater Interfaces 6:8996–9003

    Article  Google Scholar 

  29. Raza A, Ding B, Zainab G, El-Newehy M, Al-Deyab SS, Yu J (2014) J Mater Chem A 2:10137–10145

    Article  Google Scholar 

  30. Nicolas M, Guittard F, Géribaldi S (2006) Angew Chem Int Ed 45:2251–2254

    Article  Google Scholar 

  31. Liu M, Jiang L (2010) Adv Funct Mater 20:3753–3764

    Article  Google Scholar 

  32. Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) Adv Mater 23:4270–4273

    Article  Google Scholar 

  33. Jin X, Shi B, Zheng L, Pei X, Zhang X, Sun Z, Du Y, Kim JH, Wang X, Dou S, Liu K, Jiang L (2014) Adv Funct Mater 24:2721–2726

    Article  Google Scholar 

  34. Bhushan B, Jung YC (2011) Prog Mater Sci 56:1–108

    Article  Google Scholar 

  35. Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  36. Schrader ME (1995) Langmuir 11:3585–3589

    Article  Google Scholar 

  37. Xiu Y, Zhu L, Hess DW, Wong CP (2008) J Phys Chem C 112:11403–11407

    Article  Google Scholar 

  38. Kim J, Kim EK, Kim SS (2013) J Colloid Interface Sci 392:376–381

    Article  Google Scholar 

  39. Tsujii K, Yamamoto T, Onda T, Shibuichi S (1997) Angew Chem Int Ed 36:1101–1102

    Article  Google Scholar 

  40. Meng H, Wang S, Xi J, Tang Z, Jiang L (2008) J Phys Chem C 112:11454–11458

    Article  Google Scholar 

  41. Quéré D (2002) Phys A Stat Mech Appl 313:32–46

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support to this project from Nature Science Foundation of China (20873101), the General Program of the Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities (Grant No. ZX1406) and the President Fund of Hexi University (Grant No. XZ201304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlong Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 9012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Shi, Y., Liu, J. et al. Fabrication of filter paper with tunable wettability and its application in oil–water separation. J Sol-Gel Sci Technol 76, 129–137 (2015). https://doi.org/10.1007/s10971-015-3759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3759-4

Keywords

Navigation