Skip to main content
Log in

Synthesis of WO3 catalytic powders: evaluation of photocatalytic activity under NUV/visible light irradiation and alkaline reaction pH

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

WO3 catalytic powders were successfully synthesized from tungstic acid and sodium tungstate precursors by simple, low-cost sol–gel and precipitation methods followed by low-temperature hydrothermal treatment. WO3 crystallization process was completed with calcination of the samples at 500 and 700 °C. The effects of synthesis method and calcination temperature on the structural, morphological characteristics and surface area of the samples were investigated. The photocatalytic activity of WO3 samples was evaluated by the discoloration efficiency of methylene blue (MB) aqueous solutions under NUV/visible light irradiation at various reaction pH values. The photocatalytic discoloration efficiency of MB was found to increase with increasing reaction pH, with best results obtained at pH 9.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Edition 43(34):4463–4466. doi:10.1002/anie.200353594

    Article  Google Scholar 

  2. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49(1):1–14. doi:10.1016/j.apcatb.2003.11.010

    Article  Google Scholar 

  3. Melghit K, Al-Rubaei MS, Al-Amri I (2006) Photodegradation enhancement of Congo red aqueous solution using a mixture of SnO2·xH2O gel/ZnO powder. J Photochem Photobiol, A 181(2–3):137–141. doi:10.1016/j.jphotochem.2005.11.015

    Article  Google Scholar 

  4. Mohamed MM, Othman I, Mohamed RM (2007) Synthesis and characterization of MnOx/TiO2 nanoparticles for photocatalytic oxidation of indigo carmine dye. J Photochem Photobiol, A 191(2–3):153–161. doi:10.1016/j.jphotochem.2007.04.017

    Article  Google Scholar 

  5. Sayama K, Hayashi H, Arai T, Yanagida M, Gunji T, Sugihara H (2010) Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl Catal B 94(1–2):150–157. doi:10.1016/j.apcatb.2009.11.003

    Article  Google Scholar 

  6. Bamwenda GR, Arakawa H (2001) The visible light induced photocatalytic activity of tungsten trioxide powders. Appl Catal A 210(1–2):181–191. doi:10.1016/S0926-860X(00)00796-1

    Article  Google Scholar 

  7. Cheng XF, Leng WH, Liu DP, Zhang JQ, Cao CN (2007) Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light. Chemosphere 68(10):1976–1984. doi:10.1016/j.chemosphere.2007.02.010

    Article  Google Scholar 

  8. Hong SJ, Jun H, Borse PH, Lee JS (2009) Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrogen Energy 34(8):3234–3242. doi:10.1016/j.ijhydene.2009.02.006

    Article  Google Scholar 

  9. Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122(1):178–192. doi:10.1016/0021-9517(90)90269-P

    Article  Google Scholar 

  10. Matthews RW, McEvoy SR (1992) Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium dioxide. J Photochem Photobiol, A 64(2):231–246. doi:10.1016/1010-6030(92)85110-G

    Article  Google Scholar 

  11. Jimenez I, Centeno MA, Scotti R, Morazzoni F, Arbiol J, Cornet A, Morante JR (2004) NH3 interaction with chromium-doped WO3 nanocrystalline powders for gas sensing applications. J Mater Chem 14(15):2412–2420. doi:10.1039/B400872C

    Article  Google Scholar 

  12. Yu J, Qi L (2009) Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity. J Hazard Mater 169(1–3):221–227. doi:10.1016/j.jhazmat.2009.03.082

    Article  Google Scholar 

  13. Song XC, Zheng YF, Yang E, Wang Y (2007) Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4. Mater Lett 61(18):3904–3908. doi:10.1016/j.matlet.2006.12.055

    Article  Google Scholar 

  14. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62(7):1723–1732. doi:10.1021/ja01864a025

    Article  Google Scholar 

  15. Cox P (1992) Transition metal oxides. Clarendon Press, Oxford

    Google Scholar 

  16. Adamčíková Lu, Pavlíková K, Ševčík P (2000) The decay of methylene blue in alkaline solution. React Kinet Catal Lett 69(1):91–94. doi:10.1023/A:1005696926749

    Article  Google Scholar 

  17. Mills A, Hazafy D, Parkinson JA, Tuttle T, Hutchings MG (2009) Comment on “solvent effect on the electronic spectra of azine dyes under alkaline condition”. J Phys Chem A 113(34):9575–9576. doi:10.1021/jp9030927

    Article  Google Scholar 

  18. Mills A, Hazafy D, Parkinson J, Tuttle T, Hutchings MG (2011) Effect of alkali on methylene blue (C.I. Basic Blue 9) and other thiazine dyes. Dyes Pigm 88(2):149–155. doi:10.1016/j.dyepig.2010.05.015

    Article  Google Scholar 

  19. Abbott DC (1962) The colorimetric determination of anionic surface-active materials in water. Analyst 87(1033):286–293. doi:10.1039/AN9628700286

    Article  Google Scholar 

  20. Holmes W, Snyder E (1929) The atmospheric oxidation, or dealkylation, of aqueous solutions of methylene blue. Biotech Histochem 4(1):7–10

    Article  Google Scholar 

  21. Gupta CK, Mukherjee T (1990) Hydrometallurgy in extraction processes, vol 2. CRC Press, Boca Raton

  22. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol, A 108(1):1–35. doi:10.1016/S1010-6030(97)00118-4

    Article  Google Scholar 

Download references

Acknowledgments

This project is implemented through the Operational Program “Education and Lifelong Learning,” Action Archimedes III and is co-financed by the European Union (European Social Fund) and Greek national funds (National Strategic Reference Framework 2007–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Vamvasakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vamvasakis, I., Georgaki, I., Vernardou, D. et al. Synthesis of WO3 catalytic powders: evaluation of photocatalytic activity under NUV/visible light irradiation and alkaline reaction pH. J Sol-Gel Sci Technol 76, 120–128 (2015). https://doi.org/10.1007/s10971-015-3758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3758-5

Keywords

Navigation