Skip to main content

Advertisement

Log in

Luminescence properties of Lu3M5O12:Eu3+ (M = Al, Ga) and effects of Bi3+ co-dopant

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The Eu3+-doped and Eu3+, Bi3+ co-doped Lu3M5O12 (LuMG where M = Al, Ga) phosphors are synthesized by spray pyrolysis, and the crystal structure, micromorphology, luminescence properties and effects of Bi3+ co-dopant are investigated. X-ray diffraction reveals that the crystal structures of the matrices do not change after partial replacement of Lu3+ by Eu3+ and Bi3+. The phosphors exhibit the same spherical micromorphology without agglomeration and particle size distribution with a typical diameter of about 0.7 μm. The emission and excitation spectra show transitions associated with the Eu3+ 4f configurations. 7F1 energy level splitting of Eu3+ in Lu3Al5O12:Eu and stronger luminescence of Lu3Ga5O12:Eu are observed, and the quenching concentrations of Eu3+ in Lu3Al5O12:Eu and Lu3Ga5O12:Eu are 6 and 10 mol% with respect to Lu3+, respectively. Introduction of Bi3+ enhances the emission of Eu3+ accompanied by the transition emission of Bi3+.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Paula FSP, Marcela GM, Lilian RA, Evelisy CON, Alexandre C, Katia JC, Paulo SC, Eduardo JN (2010) J Lumin 130:488–493

    Article  Google Scholar 

  2. Gawande AB, Sonekar RP, Omanwar SK (2014) Int J Opt 2014:418459

    Article  Google Scholar 

  3. Zhang JJ, Ning JW, Liu XJ, Pan YB, Huang LP (2003) Mater Lett 57:3077–3081

    Article  Google Scholar 

  4. Potdevin A, Chadeyron G, Boyer D, Mahiou R (2006) J Non-Cryst Solids 352:2510–2514

    Article  Google Scholar 

  5. Pan YX, Wu MM, Su Q (2004) Mater Sci Eng B 106:251–256

    Article  Google Scholar 

  6. Chen L, Lin CC, Yeh CW, Liu RS (2010) Materials 3:2172–2195

    Article  Google Scholar 

  7. Xia GD, Zhou SM, Zhang JJ, Xu J (2005) J Cryst Growth 279:357–362

    Article  Google Scholar 

  8. Sharma PK, Dutta RK, Pandey AC (2012) J Nanoparticle Res 14:731–740

    Article  Google Scholar 

  9. Hyun KY, Jung HJ (2010) J Phys Chem C 114:226–230

    Article  Google Scholar 

  10. Sharma PK, Kumar M, Singh K, Pandey AC, Singh VN (2009) J Appl Phys 105:034309

    Article  Google Scholar 

  11. Zhou YH, Lin J, Yu M, Han SM, Wang SB, Zhang HJ (2003) Mater Res Bull 38:1289–1299

    Article  Google Scholar 

  12. Xu XG, Chen J, Deng SZ, Xu NS (2010) J Vac Sci Technol B 28:490–494

    Article  Google Scholar 

  13. Venkatramu V, León Luis SF, Lozano-Gorrín AD, Jyothi L, Babu P, Rodríguez-Mendoza UR, Jayasankar CK, Muñoz-Santiuste JE, Lavín V (2012) J Nanosci Nanotechnol 12:4495–4501

    Article  Google Scholar 

  14. Wang LX, Yin M, Guo CX, Zhang WP (2010) J Rare Earth 28:16–21

    Article  Google Scholar 

  15. Park WJ, Yoon SG, Yoon DH (2006) J Electroceram 17:41–44

    Article  Google Scholar 

  16. Huang JL, Zhou LY, Liang ZP, Gong FZ, Han JP, Wang RF (2010) J Rare Earth 28:356–360

    Article  Google Scholar 

  17. Jung DS, Park SB, Kang YC (2010) Korean J Chem Eng 27:1621–1645

    Article  Google Scholar 

  18. Kwon Y, Lee JK, Kim SJ, Nahm S, Park K (2008) J Nanosci Nanotechnol 8:5499–5502

    Article  Google Scholar 

  19. Dorenbos P (2013) J Lumin 134:310–318

    Article  Google Scholar 

  20. Filippo M, Vincenzo B, Silvia G, Paolo G, Monica D, Adolfo S, Marco B (2006) J Phys Chem B 110:6561–6568

    Article  Google Scholar 

  21. Chen L, Jiang Y, Yang GT, Zhang GB, Xin XL, Kong DX (2009) J Rare Earth 27:312–315

    Article  Google Scholar 

  22. Huang XY, Zhang QY (2010) J Appl Phys 107:063505

    Article  Google Scholar 

  23. Lang RJ (1962) J Acoust Soc Am 34:6–8

    Article  Google Scholar 

  24. Yan B, Xiao XZ (2010) Nanoscale Res Lett 5:1962–1969

    Article  Google Scholar 

  25. Oomen EWJL, Van Dongen AMA (1989) J Non-Cryst Solids 111:205–213

    Article  Google Scholar 

  26. Shi Q, Wang CZ, Zhang D, Li SH, Zhang LM, Wang WJ, Zhang JY (2012) Thin Solid Films 520:6845–6849

    Article  Google Scholar 

  27. Mhlongo GH, Dhlamini MS, Swart HC, Ntwaeaborwa OM, Hillie KT (2011) Opt Mater 33:1495–1499

    Article  Google Scholar 

  28. Blasse G (1969) Philips Res Rep 24:131–144

    Google Scholar 

  29. Zhu NF, Li YX, Yu XF (2008) Chin Phys Lett 25:703–706

    Article  Google Scholar 

  30. Dexter DL (1953) J Chem Phys Lett 21:836–850

    Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Natural Science Fund Project in Jiangsu Province of China (BK2012869) as well as Guangdong—Hong Kong Technology Cooperation Funding Scheme (TCFS) GHP/015/12SZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-zhong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Xz., Chu, Cl. & Chu, P.K. Luminescence properties of Lu3M5O12:Eu3+ (M = Al, Ga) and effects of Bi3+ co-dopant. J Sol-Gel Sci Technol 76, 43–49 (2015). https://doi.org/10.1007/s10971-015-3748-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3748-7

Keywords

Navigation