Skip to main content

Advertisement

Log in

Anti-icing performance of transparent and superhydrophobic surface under wind action

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we demonstrated the anti-icing properties of a transparent and superhydrophobic coating surface based on the octadecyltrichlorosilane-modified silica nanoparticles. The surface was prepared via a simple condensation polymerization followed by a spray-coating process. The surface exhibited a high contact angle of 157.5° and a low sliding angle of 6.5° at ambient temperature. The icing behavior of the surface was investigated by successively dropping the 0 °C of water droplets onto the superhydrophobic coating surface at various low temperatures, i.e., –5, –10 and –15 °C with the help of wind action. The surface displayed excellent anti-icing properties at –5 and –10 °C. Water droplets bounced off or slid away the surface before freezing under wind action at the above temperatures. The icing delay time is larger than 2500 s at –10 °C and 5 m/s of wind blow. While at even lower temperature of –15 °C, water froze on the surface quickly. The icing and/or anti-icing mechanisms of the superhydrophobic surface at different temperatures were interpreted by the variation of the surface wettabilities with decreasing temperatures. Specifically, the humidity in air condensed and consequently formed a layer of frost covering the superhydrophobic surface, which has significant influence on the moving abilities of the surface water droplets. As a result, the anti-icing properties of the coating surface changed with the decreasing of temperatures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bhushan B, Jung YC (2011) Prog Mater Sci 56:1–108

    Article  Google Scholar 

  2. Ganesh VA, Raut HK, Nair AS, Ramakrishna SJ (2011) Mater Chem 21:16304–16322

    Article  Google Scholar 

  3. Sun TL, Qing GY, Su BL, Jiang L (2011) Chem Soc Rev 40:2909–2921

    Article  Google Scholar 

  4. Neinhuis C, Koch K, Barthlott W (2011) Planta 213:427–434

    Article  Google Scholar 

  5. Wang YY, Xue J, Wang QJ, Chen QM, Ding JF (2013) ACS Appl Mater Interfaces 5:3370–3381

    Article  Google Scholar 

  6. Wen XF, Wang K, Pi PH, Yang JX, Cai ZQ, Zhang LJ, Qian Y, Yang ZR, Zheng DF, Cheng J (2011) Appl Surf Sci 258:991–998

    Article  Google Scholar 

  7. Davis A, Yeong YH, Steele A, Bayer IS, Loth E (2014) ACS Appl Mater Interfaces 6:9272–9279

    Article  Google Scholar 

  8. Bahadur V, Mishchenko L, Hatton B, Taylor JA, Aizenberg J, Krupenkin T (2011) Langmuir 27:14143–14150

    Article  Google Scholar 

  9. Jin CF, Yan RS, Huang JG (2011) J Mater Chem 21:17519–17525

    Article  Google Scholar 

  10. Jin CF, Jiang YF, Niu T, Huang JG (2012) J Mater Chem 22:12562–12576

    Article  Google Scholar 

  11. Li SJ, Wei YQ, Huang JG (2010) Chem Lett 39:20–21

    Article  Google Scholar 

  12. Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J (2010) ACS Nano 4:7699–7707

    Article  Google Scholar 

  13. Guo P, Wen MX, Wang L, Zheng YM (2014) Nanoscale 6:3917–3920

    Article  Google Scholar 

  14. Oberli L, Caruso D, Hall C, Fabretto M, Murphy PJ, Evans DC (2014) Adv Colloid Interface Sci 210:47–57

    Article  Google Scholar 

  15. Lee YW, Yu KY, Lee JK (2010) Langmuir 26:14110–14130

    Google Scholar 

  16. Wang FJ, Lei S, Xue MS, Ou JF, Li CQ, Li W (2014) J Phys Chem C 118:6344–6351

    Article  Google Scholar 

  17. Cao LL, Jones AK, Sikka VK, Wu JZ, Gao D (2009) Langmuir 25:12444–12448

    Article  Google Scholar 

  18. Wen MX, Lei L, Zhang MQ, Jiang L, Zheng YM (2014) ACS Appl. Mater. Interfaces 6:3963–3968

    Article  Google Scholar 

  19. Yang J, Li W (2013) J Alloy Compd 576:215–219

    Article  Google Scholar 

  20. Zhang YF, Yu XQ, Wu H, Wu J (2012) Appl Surf Sci 2012(258):8253–8257

    Article  Google Scholar 

  21. Boinovich L, Emelyanenko AM, Korolev VV, Pashinin AS (2014) Langmuir 30:1659–1668

    Article  Google Scholar 

  22. Kulinich SA, Farzaneh M (2011) Cold Reg Sci Technol 65:60–64

    Article  Google Scholar 

  23. Kulinich SA, Farzaneh M (2009) Appl Surf Sci 255:8153–8157

    Article  Google Scholar 

  24. Li XY, Yang BB, Zhang YQ, Gu GT, Li MM, Mao LQ (2014) J Sol-Gel Sci Technol 69:441–447

    Article  Google Scholar 

  25. Zhang ZJ, Jiang XH, Sun CX, Hu JL, Huang HZ (2012) IEEE Trans Dielectr Electr Insul 19:1070–9878

    Google Scholar 

  26. Tarquini S, Antonini C, Amirfazli A, Marengo M, Palacios J (2014) Cold Reg Sci Technol 100:50–58

    Article  Google Scholar 

  27. Li J, Wan HQ, Ye YP, Zhou HD, Chen JM (2012) Appl Surf Sci 261:470–472

    Article  Google Scholar 

  28. Wang SD, Luo SS (2012) Appl Surf Sci 258:5443–5450

    Article  Google Scholar 

  29. Mahadik SA, Mahadik DB, Kavale MS, Parale VG, Wagh PB, Barshilia HC, Gupta SC, Hegde ND, Rao AV (2012) J Sol-Gel Sci Technol 63:580–586

    Article  Google Scholar 

  30. Hou WX, Wang QH (2009) J Colloid Interf Sci 333:400–403

    Article  Google Scholar 

  31. Isimjan TT, Wang TY, Rohani S (2012) Chem Eng J 210:182–187

    Article  Google Scholar 

  32. Xu L, Karunakaran RG, Guo J, Yang S (2012) ACS Appl Mater Interfaces 4:1118–1125

    Article  Google Scholar 

  33. Yang H, Zhang XJ, Cai ZQ, Pi PH, Zheng DF, Wen XF, Cheng J, Yang ZR (2011) Surf Coat Tech 205:5387–5393

    Article  Google Scholar 

  34. Yang HW, Cheng YR, Xiao F (2011) Appl Surf Sci 258:1572–1580

    Article  Google Scholar 

  35. Rykaczewski K, Anand S, Subramanyam SB, Varanasi KK (2013) Langmuir 29:5230–5238

    Article  Google Scholar 

  36. Kulinich SA, Farhadi S, Nose K, Du XW (2011) Langmuir 27:25–29

    Article  Google Scholar 

  37. Feng J, Qin ZQ, Yao SH (2012) Langmuir 28:6067–6075

    Article  Google Scholar 

  38. Boreyko JB, Chen CH (2009) Phys Rev Lett 103:184501-1–184501-4

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 51263018), International S&T Cooperation Program of China (Grant No. 2012DFA51200), Science and Technology Supporting Plan of Jiangxi Province, Social Development Field (Grant Nos. 20122BBG70165) and Industrial Field (20133BBE50007), and the Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province (Grant No. JW201423002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Preparation of transparent and superhydrophobic coating surface on a glass bottle surface via a simple spray-coating method. (AVI 1982 kb)

Movie S2

Water droplets impinging on the superhydrophobic coating surface at different temperature under wind action. (AVI 3570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yu, S., Ou, J. et al. Anti-icing performance of transparent and superhydrophobic surface under wind action. J Sol-Gel Sci Technol 75, 625–634 (2015). https://doi.org/10.1007/s10971-015-3733-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3733-1

Keywords

Navigation