Structural characterisation of slightly Fe-doped SrTiO3 grown via a sol–gel hydrothermal synthesis


A detailed structural study of the incorporation of Fe into SrTiO3 nanoparticles is reported. Slightly iron-doped strontium titanate nanoparticles with 0, 1, 3 and 5 mol% concentration of iron were grown using a sol–gel hydrothermal process and characterised using Raman scattering, X-ray photoelectron and X-ray diffraction spectroscopy. The amorphisation of the nanostructures was observed as the iron content increased, which was confirmed by the TEM images. The XPS results indicated that the oxidation states of the Sr atoms were maintained in 2+. However, a mixture of Fe3+ and Fe4+ atoms was observed as the Fe content increased, resulting in a significant number of oxygen vacancies in the perovskite structure. The analysis of Raman spectra indicated that the intensity, linewidth and frequency shift of the TO4 phonon can be used as an indicator of the Fe content as well as a local temperature probe for future thermal analysis.

Graphical abstract

Temperature evolution of the Raman spectra of STO:Fe 1 mol%. The peaks with star correspond to the second-order processes. (b) Temperature dependence of the TO4 phonon mode. Blue dots denote measured Raman spectra, and the red solid lines are the Lorentzian fits to respective spectra.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Tejuca LJ, Fierro JLG (1993) Properties and applications of perovskite-type oxides. CRC Press, New York

    Google Scholar 

  2. 2.

    Müller K, Burkard H (1979) SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys Rev B 19:3593

    Article  Google Scholar 

  3. 3.

    Eisenbeiser K, Finder JM, Yu Z, Ramdani J, Curless JA, Hallmark JA (2000) Field effect transistors with SrTiO3 gate dielectric on Si. Appl Phys Lett 76:1324

    Article  Google Scholar 

  4. 4.

    Först CJ, Ashman CR, Schwarz K, Blöchl PE (2004) The interface between silicon and a high-k oxide. Nature 427:53

    Article  Google Scholar 

  5. 5.

    Ohta S, Nomura T, Ohta H, Hirano M, Hosono H, Koumoto K (2005) Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature. Appl Phys Lett 87:092108

    Article  Google Scholar 

  6. 6.

    Kan D, Terashima T, Kanda R, Masuno A, Tanaka K, Chu S (2005) Blue-light emission at room temperature from Ar irradiated SrTiO3. Nat Mater 4:816

    Article  Google Scholar 

  7. 7.

    Ohta H (2007) Thermoelectrics based on strontium titanate. Mater Today 10:44

    Article  Google Scholar 

  8. 8.

    Choi M, Oba F, Kumagai Y, Tanaka I (2013) Anti-ferrodistortive-like oxygen-octahedron rotation induced by the oxygen vacancy in cubic SrTiO3. Adv Mater 25:86

    Article  Google Scholar 

  9. 9.

    Gao F, Yang S, Li J, Qin M, Zhang Y, Sun H (2015) Fabrication, dielectric, and thermoelectric properties of textured SrTiO3 ceramics prepared by RTGG method. Ceram Int 41:127

    Article  Google Scholar 

  10. 10.

    Zhang Z, Zhao L, Wang X, Yang J (2004) The preparation and electrical properties of SrTiO3-based capacitor-varistor double-function ceramics. J Sol-Gel Sci Technol 32:367

    Article  Google Scholar 

  11. 11.

    Ghaffari M, Huang H, Tan PY, Tan OK (2012) Synthesis and visible light photocatalytic properties of SrTi(1−x)FexO(3−δ) powder for indoor decontamination. Powder Technol 225:221

    Article  Google Scholar 

  12. 12.

    Yan JH, Zhu YR, Tang YG, Zheng SQ (2009) Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation. J Alloys Compd 472:429

    Article  Google Scholar 

  13. 13.

    Rüdiger A, Schneller T, Roelofs A, Tiedke S, Schmitz T, Waser R (2005) Nanosize ferroelectric oxides—tracking down the superparaelectric limit. Appl Phys A 80:1247

    Article  Google Scholar 

  14. 14.

    Wu X, Wu D, Liu X (2008) Negative pressure effects in SrTiO3 nanoparticles investigated by Raman spectroscopy. Solid State Commun 145:255

    Article  Google Scholar 

  15. 15.

    Wang Y, Chen J, Wu X (2001) Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide. Mater Lett 49:361

    Article  Google Scholar 

  16. 16.

    Zhang Y, Hu J, Cao E, Sun L, Qin H (2012) Vacancy induced magnetism in SrTiO3. J Magn Magn Mater 324:1770

    Article  Google Scholar 

  17. 17.

    Kazan S, Şale AG, Gatiiatova JI, Valeev VF, Khaibullin RI, Mikailzade FA (2010) Magnetic resonance and ferromagnetic behaviour in Fe-implanted. Solid State Commun 150:219

    Article  Google Scholar 

  18. 18.

    Van Minh N, Phuong DTT (2011) SrTi(1−x)FexO3 nanoparticle: a study of structural, optical, impedance and magnetic properties. J Exp Nanosci 6:226

    Article  Google Scholar 

  19. 19.

    Sendilkumar A, Raju KCJ, Babu PD, Srinath S (2013) Positive temperature coefficient of resistance of tetragonal Ti4+ doped nano SrFeO3−δ. J Alloys Compd 561:174

    Article  Google Scholar 

  20. 20.

    Moos R, Menesklou W, Schreiner H-J, Härdtl KH (2000) Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control. Sensors Actuators B Chem 67:178

    Article  Google Scholar 

  21. 21.

    Neri G, Bonavita A, Micali G, Rizzo G, Licheri R, Orru R (2007) Resistive λ-sensors based on ball milled Fe-doped SrTiO3 nanopowders obtained by self-propagating high-temperature synthesis (SHS). Sensors Actuators B Chem 126(1):258. doi:10.1016/j.snb.2006.12.008

    Article  Google Scholar 

  22. 22.

    Xu J, Wei Y, Huang Y, Wang J, Zheng X, Sun Z, Fan L, Wu J (2014) Solvothermal synthesis nitrogen doped SrTiO3 with high visible light photocatalytic activity. Ceram Int 40:10583

    Article  Google Scholar 

  23. 23.

    Selmi F, Ghodgaonkar DK, Hughes R, Varadan VV, Varadan VK (1991) Ceramic phase-shifters for electronically steerable antenna systems. In: Breakwell J, Varadan VK (eds) Proceedings of SPIE 1489, structures sensing and control:97

  24. 24.

    Van Minh N, Phuong DTT (2010) Dopant effects on the structural, low temperature Raman scattering and electrical transport properties in SrTi(1−x)FexO3 nanoparticles synthesized by sol-gel method. J Sol-Gel Sci Technol 55:255

    Article  Google Scholar 

  25. 25.

    Lenser C, Kalinko A, Kuzmin A, Berzins D, Purans J, Szot K (2011) Spectroscopic study of the electric field induced valence change of Fe-defect centers in SrTiO3. Phys Chem Chem Phys 13:20779

    Article  Google Scholar 

  26. 26.

    Verma AS, Kumar A, Bhardwaj SR (2008) Correlation between ionic charge and the lattice constant of cubic perovskite solids. Phys Status Solidi 245:1520

    Article  Google Scholar 

  27. 27.

    Ehre D, Cohen H, Lyahovitskaya V, Lubomirsky I (2008) X-ray photoelectron spectroscopy of amorphous and quasiamorphous phases of BaTiO3 and SrTiO3. Phys Rev B 77:184106

    Article  Google Scholar 

  28. 28.

    Merino NA, Barbero BP, Eloy P, Cadús LE (2006) La1−xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS. Appl Surf Sci 253:1489

    Article  Google Scholar 

  29. 29.

    Ghaffari M, Liu T, Huang H, Tan OK, Shannon M (2012) Investigation of local structure effect and X-ray absorption characteristics (EXAFS) of Fe(Ti) K-edge on photocatalyst properties of SrTi(1−x)FexO(3−δ). Mater Chem Phys 136:347

    Article  Google Scholar 

  30. 30.

    Bocquet A, Fujimori A, Mizokawa T, Saitoh T, Namatame H, Suga S (1992) Electronic structure of SrFe4O3 and related Fe perovskite oxides. Phys Rev B 45:1561

    Article  Google Scholar 

  31. 31.

    Ghaffari M, Shannon M, Hui H, Tan OK, Irannejad A (2012) Preparation, surface state and band structure studies of SrTi(1−x)Fe(x)O(3−δ) (x = 0–1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy. Surf Sci 606:670

    Article  Google Scholar 

  32. 32.

    Sahner K, Schönauer D, Moos R, Matam M, Post ML (2006) Effect of electrodes and zeolite cover layer on hydrocarbon sensing with p-type perovskite SrTi0.8Fe0.2O3-δ thick and thin films. J Mater Sci 41:5828

    Article  Google Scholar 

  33. 33.

    Balachandran U, Eror NG (1982) Raman spectra of strontium titanate. J Am Ceram Soc 65:c54

    Article  Google Scholar 

  34. 34.

    Sirenko A, Akimov I, Fox J, Clark A, Li H-C, Si W (1999) Observation of the first-order Raman scattering in SrTiO3 thin films. Phys Rev Lett 82:4500

    Article  Google Scholar 

  35. 35.

    Banerjee S, Kim D-I, Robinson RD, Herman IP, Mao Y, Wong SS (2006) Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr(1−x)TiO3 perovskite nanocubes. Appl Phys Lett 89:223130

    Article  Google Scholar 

  36. 36.

    Rabuffetti FA, Kim H-S, Enterkin JA, Wang Y, Lanier CH, Marks LD (2008) Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature. Chem Mater 20:5628

    Article  Google Scholar 

  37. 37.

    Zhong W, King-Smith RD, Vanderbilt D (1994) Giant LO–TO splittings in perovskite ferroelectrics. Phys Rev Lett 72:3618

    Article  Google Scholar 

  38. 38.

    Maletic S, Popovic D, Dojcilovic J (2010) Dielectric measurements, Raman scattering and surface studies of Sm-doped SrTiO3 single crystal. J Alloys Compd 496:388

    Article  Google Scholar 

  39. 39.

    Rodenbücher C, Jauß A, Havel V, Waser R, Szot K (2014) Fast mapping of inhomogeneities in the popular metallic perovskite Nb:SrTio3 by confocal Raman microscopy. Phys Status Solidi Rapid Res Lett 08:781

    Article  Google Scholar 

  40. 40.

    Gupta S, Katiyar RS (2001) Temperature-dependent structural characterization of sol–gel deposited strontium titanate (SrTiO3) thin films using Raman spectroscopy. J Raman Spectrosc 32:885

    Article  Google Scholar 

  41. 41.

    Du YL, Chen G, Zhang MS (2004) Investigation of structural phase transition in polycrystalline SrTiO3 thin films by Raman spectroscopy. Solid State Commun 130:577

    Article  Google Scholar 

  42. 42.

    Ostapchuk T, Petzelt J, Železný V, Pashkin A, Pokorný J, Drbohlav I (2002) Origin of soft-mode stiffening and reduced dielectric response in SrTiO3 thin films. Phys Rev B 66:235406

    Article  Google Scholar 

  43. 43.

    Chávez-Ángel E, Reparaz JS, Gomis-Bresco J, Wagner MR, Cuffe J, Graczykowski B (2014) Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry. APL Mater 2:012113

    Article  Google Scholar 

  44. 44.

    Reparaz JS, Chavez-Angel E, Wagner MR, Graczykowski B, Gomis-Bresco J, Alzina F (2014) A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry. Rev Sci Instrum 85:034901

    Article  Google Scholar 

Download references


The authors acknowledge the financial support from the FONDECYT grant under contract No. 1110555, the basal Financing program CONICYT FB0807 (CEDENNA). ECA and CMST gratefully acknowledge financial support from the Spanish MINECO projects nanoTHERM (Grant No. CSD2010-0044) and TAPHOR (MAT2012-31392), as well as partial support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295).

Author information



Corresponding authors

Correspondence to S. Fuentes or E. Chávez-Ángel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fuentes, S., Muñoz, P., Barraza, N. et al. Structural characterisation of slightly Fe-doped SrTiO3 grown via a sol–gel hydrothermal synthesis. J Sol-Gel Sci Technol 75, 593–601 (2015).

Download citation


  • Strontium titanate
  • Fe-doped
  • Raman scattering
  • XPS analysis