Skip to main content
Log in

Improved dielectric and magnetic properties of multiferroic BiFeO3–NiFe2O4 nanocomposite thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Multiferroic (1−x)BiFeO3(BFO)–xNiFe2O4(NFO) (x = 0, 0.1, 0.2, 0.3) nanocomposite thin films were prepared by sol–gel technique and their structural, electrical and magnetic properties were studied. X-ray diffraction and transmission electron microscopy examinations confirmed that NFO nanoparticles were well distributed in BFO matrix. The magnetic and dielectric properties were significantly improved by incorporation of NFO nanoparticle in matrix of BFO. The saturation magnetization (M s ) and remnant magnetization (M r ) increased as high as ~34 and ~7 emu/cm3 respectively for x = 0.1. The dielectric constant of the films increased from 160 (for x = 0) to 280 (for x = 0.3). However, the values of ferroelectric polarization were decreased with increasing x. Importantly, the sample with (x = 0.1), the best sample in our study demonstrates improved ferroelectric as well as magnetic properties and thus provides a great opportunities for many passive electronic devices for future potential applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759–765

    Article  Google Scholar 

  2. Ramesh R, Spaldin NA (2007) Nat Mater 6:21–29

    Article  Google Scholar 

  3. Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) J Appl Phys 103:031101

    Article  Google Scholar 

  4. Palkar VR, Kundaliya C, Malik SK, Bhattacharya S (2004) Phys Rev B 69:212102-1–212102-3

    Article  Google Scholar 

  5. Ma J, Hu J, Li Z, Nan CW (2011) Adv Mater 23:1062–1087

    Article  Google Scholar 

  6. Chen YJ, Hsieh YH, Liao SC, Hu Z, Huang MJ, Kuo WC, Chin YY, Uen TM, Juang JY, Lai CH, Lin HJ, Chen CT, Chu YH (2013) Nanoscale 5:4449

    Article  Google Scholar 

  7. Yan F, Chen G, Lu L, Finkel P, Spanier EJ (2013) Appl Phys Lett 103:042906

    Article  Google Scholar 

  8. Hsieh YH, Kuo HH, Liao SC, Liu HJ, Chen YJ, Lin HJ, Chen CT, Lai CH, Zhan Q, Chueh Y, Chu YH (2013) Nanoscale 5:6219

    Article  Google Scholar 

  9. Sone K, Sekiguchi S, Naganuma H, Miyazaki T, Nakajima T (2012) J Appl Phys 111:124101-1–124101-5

    Article  Google Scholar 

  10. Sarkar B, Dalal B, Vishal DA, Kaushik C, Amitava M, De SK (2014) J Appl Phys 115:123908

    Article  Google Scholar 

  11. Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G (2000) Phys Rev Lett 84:5423

    Article  Google Scholar 

  12. Zheng RY, Gao XS, Zhou ZH, Wang J (2007) J Appl Phys 101:054104-1–054104-5

    Google Scholar 

  13. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Science 299:1719–1722

    Article  Google Scholar 

  14. Naganuma H, Inoue Y, Okamura S (2008) IEEE Trans Ultrason Ferroelectr Freq Control 55:1046–1050

    Article  Google Scholar 

  15. Yan L, Xing ZP, Wang ZG, Wang T, Lei GY, Li JF, Viehland D (2009) Appl Phys Lett 94:192902

    Article  Google Scholar 

  16. Crane SP, Bihler C, Brandt MS, Goennenwein STB, Gajek M, Ramesh R (2009) J Magn Magn Mater 321:L5–L9

    Article  Google Scholar 

  17. Benatmane N, Crane SP, Zavaliche F, Ramesh R, Clinton TW (2010) Appl Phys Lett 96:082503

    Article  Google Scholar 

  18. Gu J, Yang S, Yang W, Qi Y, Zhao G, Sun H (2014) J Magn Magn Mater 349:140–143

    Article  Google Scholar 

  19. Tyagi M, Kumari M, Chatterjee R, Sun AC, Sharma P (2014) IEEE Trans Magn 50:2500704

    Article  Google Scholar 

  20. Zhan Q, Yu R, Crane SP, Zheng H, Kisielowski C, Ramesh R (2006) Appl Phys Lett 89:172902

    Article  Google Scholar 

  21. Scott JF (2008) J Phys Condens Matter 20:021001

    Article  Google Scholar 

  22. Upadhyay SK, Reddy VR (2013) J Appl Phys 113:114107

    Article  Google Scholar 

  23. Koops CG (1951) Phys Rev 83:121

    Article  Google Scholar 

  24. Wagner KW (1993) Ann Phys 40:818

    Google Scholar 

  25. Babu SN, Hsu JH, Chen YS, Lin JG (2010) J Appl Phys 107:09D919

    Article  Google Scholar 

  26. Babu SN, Hsu JH, Chen YS, Lin JG (2011) J Appl Phys 109:07D904

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by University grant commission (UGC), India, under Grant 40/446/2011 (SR). The authors also would like to acknowledge SQUID, a National facility at IIT Delhi (funded by DST, India) for magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, M., Chatterjee, R. & Sharma, P. Improved dielectric and magnetic properties of multiferroic BiFeO3–NiFe2O4 nanocomposite thin films. J Sol-Gel Sci Technol 74, 692–697 (2015). https://doi.org/10.1007/s10971-015-3650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3650-3

Keywords

Navigation