Skip to main content
Log in

Acoustic and electroacoustic spectroscopic determination of the critical coagulation concentration for the aggregation of fumed silica

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Acoustic and electroacoustic spectroscopy were use to model varying concentrations of NH4Cl in a 25 wt% fumed silica suspension for interpretation and visualization of the critical coagulation concentration (CCC) needed to induce coagulation of the suspension. The acoustic data indicates a range for the CCC that agrees with Derjaguin and Landau, Verwey and Overbeek theory and experimental results found in literature. The electroacoustic data suggest a power law relationship between NH4Cl concentration and changes in the colloidal vibrational current, and predicts that 0.4M is the CCC for NH4Cl in a fumed silica suspension.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bhandarkar S (2004) Sol-gel processing for optical communication technology. J. Am. Ceram. Soc 87:1180–1199

    Article  Google Scholar 

  2. Costa L, Kerner D (2003) High purity glass forms by a colloidal sol-gel process. J Solgel Sci Technol 26:63–66

    Article  Google Scholar 

  3. Teoli D, Realdon N, Guglielmi M, Rosato A, Morpurgo M, Parisi L (2006) Wet sol-gel derived silica for controlled release of proteins. J Control Release 116:295–303

    Article  Google Scholar 

  4. Bergenholtz J, Fuchs M (1999) Gel transitions in colloidal suspensions. J Phys Condens Matter 11:10171–10182

    Article  Google Scholar 

  5. Schmidt H, Goedicke S, Jonschker G, Mennig M (2000) The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites. J Solgel Sci Technol 19:31–51

    Article  Google Scholar 

  6. Bhattacharya S, Kieffer J (2008) Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels. J Phys Chem C 112:1764–1771

    Article  Google Scholar 

  7. Brunet F, Dubois M, Cabane B, Perly B (1991) Sol-gel polymerization studied through 29Si NMR with polarization transfer. J Phys Chem 95:944–951

    Article  Google Scholar 

  8. Pereira JCG, Price G, Catlow CRA, Almeida R (1997) Atomistic modeling of silica based sol-gel processes. J Solgel Sci Technol 8:55–58

    Google Scholar 

  9. Charpentier AP, Li X, Sui R (2009) Study of the sol-gel reaction mechanism in supercritical co2 for the formation of sio2 nanocomposites. Langmuir 25:3748–3754

    Article  Google Scholar 

  10. Shea KJ, Loy DA (2001) A mechanistic investigation of gelation. The sol-gel polymerization of precursors to bridged polysilsesquioxanes. Acc Chem Res 34:707–716

    Article  Google Scholar 

  11. Sink K (2010) Influence of chemical conditions on the nanoporous structure of silicate aerogels. Materials 3:704–740

    Article  Google Scholar 

  12. Trinh TT, Santen RAv, Jansen APJ, Meijer EJ (2009) Role of water in silica oligomerization. J Phys Chem C 113:2647–2652

    Article  Google Scholar 

  13. Stanic V, Etsell TH, Pierre AC, Mikula RJ (2001) Chemical kinetics study of the sol-gel processing of GeS2. J Phys Chem A 105:6136–6143

    Article  Google Scholar 

  14. Musat V, Budrugeac P, Gheorghies C (2008) Effect of reagents mixing on the thermal behavior of sol-gel precursors for silica-based nanocomposite thin films. J Therm Anal Calorim 94:373–377

    Article  Google Scholar 

  15. Ahmad S, Deepa M, Agnihotry SA (2008) Effect of salts on the fumed silica-based composite polymer electrolytes. Sol Energy Mater Sol Cells 92:184–189

    Article  Google Scholar 

  16. Felmy AR, Rustad JR, Cho H, Mason MJ (2001) An aqueous thermodynamic model for polymerized silica species to high ionic strength. J Solut Chem 30:509

    Article  Google Scholar 

  17. Schantz Zackrisson A, Martinelli A, Matic A, Bergenholtz J (2006) Concentration effects on irreversible colloid cluster aggregation and gelation of silica dispersions. J Colloid Interface Sci 301:137–144

    Article  Google Scholar 

  18. Trompette JL, Clifton MJ (2004) Influence of ionic specificity on the microstructure and the strength of gelled colloidal silica suspensions. J Colloid Interface Sci 276:475–482

    Article  Google Scholar 

  19. Trompette JL, Meireles M (2003) Ion-specific effect on the gelation kinetics of concentrated colloidal silica suspensions. J Colloid Interface Sci 263:522–527

    Article  Google Scholar 

  20. Burnett SS, Mitchell JW (2013) Dft investigation of the mechanism and chemical kinetics for the gelation of colloidal silica. MRS Proceedings 1547

  21. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370

    Article  Google Scholar 

  22. Dukhin AS, Goetz PJ (2001) Acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions and emulsions. Adv Colloid Interface Sci 92:73–132

    Article  Google Scholar 

  23. Dukhin AS, Goetz PJ (eds) (2010) Characterisation of liquids, nano- and microparticulates, and porous bodies using ultrasound. Elsevier, Amsterdam

    Google Scholar 

  24. Dukhin AS, Goetz PJ, Thommes M (2010) Seismoelectric effect: a non-isochoric streaming current. 1. Experiment. J Colloid Interface Sci 345:547–553

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. Burnett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnett, S.S., Mitchell, J.W. Acoustic and electroacoustic spectroscopic determination of the critical coagulation concentration for the aggregation of fumed silica. J Sol-Gel Sci Technol 74, 661–669 (2015). https://doi.org/10.1007/s10971-015-3645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3645-0

Keywords

Navigation