Skip to main content
Log in

Functionalization of SBA-16 silica particles for ibuprofen delivery

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, the surface of the hydrothermally synthesized SBA-16 was modified with 3-aminopropyltriethoxysilane (APTES) as a controlled drug delivery system. In this case, ibuprofen was chosen as a drug. Furthermore, it was loaded into the SBA-16 base and functionalized SBA-16. Then, the adsorption and release properties of mention samples were studied. In addition, mesoporous materials were characterized using X-ray diffraction, fourier-transform infra-red spectroscopy, N2 adsorption/desorption analysis and ultra-violet spectroscopy. The results showed that adsorption and release behavior of ibuprofen were extremely depended on various surface properties of SBA-16 particles. Furthermore, it was observed that the sample with a higher percent loaded of ibuprofen exhibited a higher percent of the ibuprofen released molecules in a phosphate buffer solution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smirnova I, Mamic J, Arlt W (2003) Adsorption of drugs on silica aerogels. Langmuir 19:8521

    Article  Google Scholar 

  2. Tan A, Simovic S, Davey AK, Rades T, Prestidge CA (2009) Silica-lipid hybrid (SLH) microcapsules: a novel oral delivery system for poorly soluble drugs. J Controlled Release 134:62

    Article  Google Scholar 

  3. Eerdenbrugh BV, Speybroeck MV, Mols R, Houthoofd K, Martens JA, Froyen L, Humbeeck JV, Augustijns P, Mooter G (2009) Eur. Itraconazole/TPGS/Aerosil 200 solid dispersions: characterization, physical stability and in vivo performance. J Pharm Sci 38:270

    Google Scholar 

  4. Quintanar-Guerrero D, Ganem-Quintanar A, Nava-Arzaluz MG, Pinon-Segundo E (2009) Silica xerogels as pharmaceutical drug carriers. Expert Opin Drug Delivery 6:485

    Article  Google Scholar 

  5. Arcos D, Vallet-Regi M (2010) Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater 6:2874

    Article  Google Scholar 

  6. Torney F, Trewyn BG, Victor SY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295

    Article  Google Scholar 

  7. Slowing II, Vivero-Escoto JL, Wu C (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Delivery Rev 60:1278

    Article  Google Scholar 

  8. Wang S (2009) Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 117:1

    Article  Google Scholar 

  9. Manzano M, Colilla M, Vallet-Regi M (2009) Drug delivery from ordered mesoporous matrices. Expert Opin Drug Delivery 6:1383

    Article  Google Scholar 

  10. Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6:1952

    Article  Google Scholar 

  11. Andersson J, Rosenholm J, Areva S, Linden M (2004) Matrices, influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mater 16:4160

    Article  Google Scholar 

  12. Qu F, Zhu G, Lin H, Zhang W, Sun J, Li S, Qiu S (2006) A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials. J Solid State Chem 179:2027

    Article  Google Scholar 

  13. Heikkila T, Salonen J, Tuura J, Kumar N, Salmi T, Murzin DY, Hamdy MS, Mul G, Laitinen L, Kaukonen AM, Hirvonen J, Lehto V (2007) Evaluation of mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 materials as API carriers for oral drug delivery. Drug Delivery 14:337

    Article  Google Scholar 

  14. Trewyn BG, Nieweg JA, Zhao Y, Lin VS (2008) Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem Eng J 137:23

    Article  Google Scholar 

  15. Charnay C, Bégu S, Tourné-Péteilh C, Nicole L, Lerner DA, Devoisselle JM (2004) Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm 57:533

    Article  Google Scholar 

  16. Qu F, Zhu G, Huang S, Li S, Sun J, Zhang D, Qiu S (2006) Controlled release of captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous Mesoporous Mater 92:1

    Article  Google Scholar 

  17. Vallet-Regi M, Balas F, Colilla M, Manzano M (2007) Bioceramics and pharmaceuticals: a remarkable synergy. Solid State Sci 9:768

    Article  Google Scholar 

  18. Belhadj-Ahmed F, Badens E, Llewellyn P, Denoyel R, Charbit G (2009) Impregnation of vitamin E acetate on silica mesoporous phases using supercritical carbon dioxide. J Supercrit Fluids 51:278

    Article  Google Scholar 

  19. Tao Z, Toms B, Goodisman J, Asefa T (2010) Mesoporous silica microparticles enhance the cytotoxicity of anticancer platinum drugs. ACS Nano 4:789

    Article  Google Scholar 

  20. Heikkila T, Santos HA, Kumar N, Murzin DY, Salonen J, Laaksonen T, Peltonen L (2010) Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells, J. Hirvonen, V. Lehto. Eur J Pharm Biopharm 74:483

    Article  Google Scholar 

  21. Ghedini E, Signoretto M, Pinna F, Crocellà V, Bertinetti L, Cerrato G (2010) Controlled release of metoprolol tartrate from nanoporous silica matrices. Microporous Mesoporous Mater 132:258

    Article  Google Scholar 

  22. Mellaerts R, Aerts CA, Van Humbeeck J, Augustijns P, Van den Mooter G (2007) Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials, J.A. Martens. Chem Commun 13:1375

    Article  Google Scholar 

  23. Ambrogi V, Perioli L, Marmottini F, Accorsi O, Pagano C, Ricci M, Rossi C (2008) Role of mesoporous silicates on carbamazepine dissolution rate enhancement. Microporous Mesoporous Mater 113:445

    Article  Google Scholar 

  24. Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, Van den Mooter G, Augustijns P, Martens JA (2008) Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm 69:2230

    Google Scholar 

  25. Speybroeck M, Barillaro V, Thi TD, Mellaerts R, Martens J, Van Humbeeck J, Vermant J, Annaert P, Van den Mooter G, Augustijns P (2009) Ordered mesoporous silica material SBA-15: a broad-spectrum formulation platform for poorly soluble drugs. J Pharm Sci 98:2648

    Article  Google Scholar 

  26. Shen SC (2010) W.K. Ng.L. Chia, Y.C. Dong, R.B.H. Tan, Stabilized amorphous state of ibuprofen by co-spray drying with mesoporous SBA-15 to enhance dissolution properties. J Pharm Sci 99:1997

    Google Scholar 

  27. Heikkila T, Salonen J, Tuura J, Hamdy MS, Mul G, Kumar N, Salmi T, Murzin DY, Laitinen L, Kaukonen AM, Hirvonen J, Lehto VP (2007) Int J Pharm 133:133

    Article  Google Scholar 

  28. Thomas MJK, Slipper I, Walunj A, Jain A, Favretto ME, Kallinteri P, Douroumis D (2010) Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles. Int J Pharm 387:272

    Article  Google Scholar 

  29. Tang Q, Xu Y, Wu D, Sun Y (2006) A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J Solid State Chem 179:1513

    Article  Google Scholar 

  30. Sharma KK, Asefa T (2007) Bifunctional nanocatalysts by simple postgrafting of spatially isolated catalytic groups on mesoporous materials. Angew Chem Int Ed 46:2879

    Article  Google Scholar 

  31. Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 40:846

    Article  Google Scholar 

  32. Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17:1225

    Article  Google Scholar 

  33. Moller K, Bein T (1998) Inclusion chemistry in periodic mesoporous hosts. Chem Mater 10:2950

    Article  Google Scholar 

  34. Melero JA, van Grieken R, Morales G (2006) Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chem Rev 106:3790

    Article  Google Scholar 

  35. Huh S, Wiench JW, Yoo JC, Pruski M, Lin VSY (2003) Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem Mater 15:4247

    Article  Google Scholar 

  36. Hu Y, Wang J, Zhi Z, Jiang T, Wang S (2011) Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J Colloid Interface Sci 363:410

    Article  Google Scholar 

  37. Hu Y, Zhi Z, Zhao Q, Wu C, Zhao P, Jiang H, Jiang T (2012) 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater 147:94

    Article  Google Scholar 

  38. Sevimli F, Yılmaz A (2012) Surface functionalization of SBA-15 particles for amoxicillin delivery. Microporous Mesoporous Mater 158:281

    Article  Google Scholar 

  39. Jin H, Wu Q, Chen C, Zhang D, Pang W (2006) Facile synthesis of crystal like shape mesoporous silica SBA-16. Microporous Mesoporous Mater 97:141

    Article  Google Scholar 

  40. Li Z, Su K, Cheng B, Deng Y (2010) Organically modified MCM-type material preparation and its usage in controlled amoxicillin delivery. J Colloid Interface Sci 342:607

    Article  Google Scholar 

  41. Nguyen TBP, Lee JW, Shim WG, Moon H (2008) Synthesis of functionalized SBA-15 with ordered large pore size and its adsorption properties of BSA. Microporous Mesoporous Mater 110:560

    Article  Google Scholar 

  42. Li N, Li X, Wang W, Geng W, Qiu S (2006) Blue-shifting photoluminescence of Tris (8-hydroxyquinoline) aluminium encapsulated in the channel of functionalized mesoporous silica SBA-15. Mater Chem Phys 100:128–131

    Article  Google Scholar 

  43. Szegedi A, Popova M, Goshev I, Mihaly J (2011) Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. J Solid State Chem 184:1201

    Article  Google Scholar 

  44. Sliwinska-Bartkowiak M, Dudziak G, Gras R, Sikorski R, Radhakrishnan R, Gubbins KE (2001) Freezing behavior in porous glasses and MCM 41. Colloid Surf A Physicochem Eng Aspects 187:523

    Article  Google Scholar 

  45. Vathyam R, Wondimu E, Das S, Zhang C, Hayes S, Tao Z, Asefa T (2011) Improving the adsorption and release capacity of organic-functionalized mesoporous materials to drug molecules with temperature and synthetic methods. J Phys Chem C 115:13135

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully thank Semnan University, and M. Shafiee Ardestani, M. R. Aghasadeghi in Department of Hepatitis B and HIV, Pasteur Institute of Iran for partially supporting the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yousefpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghiloo, M., Yousefpour, M., Nourbakhsh, M.S. et al. Functionalization of SBA-16 silica particles for ibuprofen delivery. J Sol-Gel Sci Technol 74, 537–543 (2015). https://doi.org/10.1007/s10971-015-3631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3631-6

Keywords

Navigation