Advertisement

Journal of Sol-Gel Science and Technology

, Volume 74, Issue 2, pp 447–459 | Cite as

Hybrid sol–gel coating agents based on zirconium(IV) propoxide and epoxysilane

  • Ingrid Milošev
  • Barbara Kapun
  • Peter Rodič
  • Jernej Iskra
Original Paper

Abstract

The hybrid sol–gel was synthesized as a basis for preparing coatings for use as anticorrosion and antibacterial protectants of medical implants. Coatings were prepared using (3-glycidyloxypropyl)trimethoxysilane and zirconium(IV) propoxide as precursors, with acetic acid as a catalyst. The synthesis was followed using in situ Fourier transform infrared spectroscopy. Specific steps of the synthesis were followed by 1H nuclear magnetic resonance spectroscopy. The reactions of zirconium(IV) propoxide and (3-glycidyloxypropyl)trimethoxysilane with acetic acid differed; acetate was formed only in the reaction between zirconium(IV) propoxide and acetic acid. The reaction of the opening of the epoxy ring of GPTMS was followed, during both synthesis and curing, at room temperature and at 150 °C. The opening of epoxy ring was catalysed thermally. The thermal stability of the prepared sol was determined by thermogravimetric analysis.

Graphical Abstract

Keywords

Hybrid sol–gel coating Zirconium(IV) propoxide (3-glycidyloxypropyl)trimethoxysilane (GPTMS) FTIR NMR 

Notes

Acknowledgments

Financial support by the Slovene Research Agency is acknowledged (Grants Nos. P2-0148 and P1-0134). The authors thank the Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP) for use of the ReactIR™ 45 FTIR instrument and accompanying equipment, Prof. Barbara Malič from the Jožef Stefan Institute and Centre of Excellence NAMASTE, Advanced Materials and Technologies for the Future, for the use of PerkinElmer Spectrum 100 instrument, and the National NMR Centre at the National Institute of Chemistry. The authors thank Prof. R.H. Pain for proof reading the manuscript.

References

  1. 1.
    Innocenzi P, Brusation G, Guglielmi M (1999) Bertani. Chem Mater 11:1672–1679CrossRefGoogle Scholar
  2. 2.
    Metroke TL, Kachurina O, Knobbe ET (2002) Prog Org Coat 44:295–305CrossRefGoogle Scholar
  3. 3.
    Davis SR, Brough AR, Atkinskon A (2003) J Non-Cryst Solids 315:197–205CrossRefGoogle Scholar
  4. 4.
    Oliver MS, Blohowiak KY, Dauskardt RH (2010) J Sol–Gel Sci Technol 55:360–368CrossRefGoogle Scholar
  5. 5.
    Fontinha IR, Salta MM, Zheludkevich ML, Ferreira MGS (2013) Port Electrochim Acta 31:307–319CrossRefGoogle Scholar
  6. 6.
    Riegel B, Blittersdorf S, Kiefer W, Hofacker S, Müller M, Schottner G (1998) J Non-Cryst Solids 226:76–84CrossRefGoogle Scholar
  7. 7.
    Zhao J, Fan W, Wu D, Sun Y (2000) J Non-Cryst Solids 261:15–20CrossRefGoogle Scholar
  8. 8.
    Rubio F, Rubio J, Oteo JL (1998) J Mater Sci Lett 17:1839–1842CrossRefGoogle Scholar
  9. 9.
    Yoldas BE (1986) J Mater Sci 21:1080–1086CrossRefGoogle Scholar
  10. 10.
    Schmidt H, Seiferling B (1986) MRS proceedings. doi: 10.1557/PROC-73-739
  11. 11.
    Feng Z, Liu Y, Thompson GE, Skeldon P (2010) Surf Interace Anal 42:306–310CrossRefGoogle Scholar
  12. 12.
    Voevodin NN, Grebasch NT, Soto WS, Kasten LS, Grant JT, Arnold FE, Donley MS (2001) Prog Org Coat 41:287–293CrossRefGoogle Scholar
  13. 13.
    Rodič P, Iskra J, Milošev I (2014) J Sol–Gel Sci Technol 70:90–103CrossRefGoogle Scholar
  14. 14.
    Rodič P, Iskra J, Milošev I (2014) J Non-Cryst Solids 396–397:25–35Google Scholar
  15. 15.
    Hoebbel D, Nacken M, Schmidt H (2000) J Sol–el Sci Technol 19:305–309CrossRefGoogle Scholar
  16. 16.
    Philipp G, Schmidt H (1986) J Non-Cryst Solids 82:31–36CrossRefGoogle Scholar
  17. 17.
    Jay RR (1964) Anal Chem 36:667–668CrossRefGoogle Scholar
  18. 18.
    Matejka L, Dukh O, Brus J, Simonsick WJ, Meisnner B (2000) J Non-Cryst Solids 270:34–47CrossRefGoogle Scholar
  19. 19.
    Yi G, Sayer M (1996) J Sol–Gel Sci Technol 6:65–74CrossRefGoogle Scholar
  20. 20.
    Voevodin NN, Grebasch NT, Soto WS, Arnold FE, Donley MS (2001) Surf Coat Techol 140:24–28CrossRefGoogle Scholar
  21. 21.
    Noonan GO, Ledford JS (1995) Chem Mater 7:1117–1123CrossRefGoogle Scholar
  22. 22.
    Liu W-C, Yang C-C, Chen W-C, Dai B-T, Tsai M-S (2002) J Non-Cryst Solids 311:233–240CrossRefGoogle Scholar
  23. 23.
    Albrect MG, Blanchette C (1998) J Electrochem Soc 145:4019–4025CrossRefGoogle Scholar
  24. 24.
    Park ES, Ru HW, Nguyen CV, Jaffe RL, Yoon DY (2008) Chem Mater 20:1548–1554CrossRefGoogle Scholar
  25. 25.
    Deacon GB, Phillips RJ (1980) Coord Chem Rev 33:227–250CrossRefGoogle Scholar
  26. 26.
    Ochi M, Nii D, Harada M (2011) Mater Chem Phys 129:424–432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ingrid Milošev
    • 1
  • Barbara Kapun
    • 1
  • Peter Rodič
    • 1
  • Jernej Iskra
    • 1
    • 2
  1. 1.Department of Physical and Organic ChemistryJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Centre of Excellence for Integrated Approaches in Chemistry and Biology of ProteinsCiPKeBIPLjubljanaSlovenia

Personalised recommendations