Skip to main content

Highly fluorescent sub 40-nm aminated mesoporous silica nanoparticles

Abstract

We report the room temperature synthesis of highly fluorescent, sub-40 nm aminated mesoporous silica nanoparticles in water using triethanolamine (TEA) as catalyst. Co-condensation reactions between silica precursors, i.e., tetraethoxysilane and 3-aminopropyl triethoxysilane, allows the incorporation of amino moieties and conjugated fluorescent dye (tetramethylrhodamine-5(6)-isothiocyanate; TRITC) throughout the silica matrix. Resulting materials are characterized using a combination of transmission electron microscopy, nitrogen sorption measurements, dynamic light scattering, zeta potential measurements, thermogravimetric analysis, fluorescence correlation spectroscopy and solid-state 29Si-NMR spectroscopy. The TEA-catalyzed system leads to the formation of bright and discrete sub-40 nm aminated mesoporous silica nanoparticles with disordered pore structure and high organic content. Resulting nanomaterials may find use as simultaneous fluorescent probes and drug delivery vehicles in future theranostic applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Piao Y, Burns A, Kim J, Wiesner U, Hyeon T (2008) Adv Funct Mater 18:3745

    Article  Google Scholar 

  2. 2.

    Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 35:56

    Article  Google Scholar 

  3. 3.

    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    Article  Google Scholar 

  4. 4.

    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710

    Article  Google Scholar 

  5. 5.

    Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988

    Article  Google Scholar 

  6. 6.

    He Q, Cui X, Cui F, GuoL, Shi J (2009) Microporous Mesoporous Mater 117:609

  7. 7.

    Lu F, Wu S, Hung Y, Mou C (2009) Small 5:1408

    Article  Google Scholar 

  8. 8.

    Huh S, Wiench JW, Yoo JC, Pruski M, Lin VSY (2003) Chem Mater 15:4247

    Article  Google Scholar 

  9. 9.

    Fowler CE, Khushalani D, Lebeau B, Mann S (2001) Adv Mater 13:649

    Article  Google Scholar 

  10. 10.

    Moller K, Kobler J, Bein T (2007) Adv Funct Mater 17:605

    Article  Google Scholar 

  11. 11.

    Moller K, Kobler J, Bein T (2007) J Mater Chem 17:624

    Article  Google Scholar 

  12. 12.

    Qiao Z, Zhang L, Guo M, Liu M, Huo Q (2009) Chem Mater 21:3823

    Article  Google Scholar 

  13. 13.

    Suzuki K, Ikari K, Imai H (2004) J Am Chem Soc 126:462

    Article  Google Scholar 

  14. 14.

    Urata C, Aoyama Y, Tonegawa A, Yamauchi Y, Kuroda K (2009) Chem Commun 34:5094

    Article  Google Scholar 

  15. 15.

    Kobler J, Moller K, Bein T (2008) ACS Nano 2:791

    Article  Google Scholar 

  16. 16.

    Gu J, Fan W, Shimojima A, Okubo T (2007) Small 3:1740

    Article  Google Scholar 

  17. 17.

    Lee C, Lo L, Mou C, Yang C (2008) Adv Funct Mater 18:1

    Google Scholar 

  18. 18.

    Suteewong T, Sai H, Bradbury M, Estroff LA, Gruner SM, Wiesner U (2012) Chem Mater 24:3895

    Article  Google Scholar 

  19. 19.

    Suteewong T, Sai H, Cohen R, Wang S, Bradbury M, Baird B, Gruner SM, Wiesner U (2011) J Am Chem Soc 133:172

    Article  Google Scholar 

  20. 20.

    Brunauer S, Deming LS, Deming WE, Teller E (1940) J Am Chem Soc 62:1723

    Article  Google Scholar 

  21. 21.

    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  Google Scholar 

  22. 22.

    Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Chem Mater 20:2677

    Article  Google Scholar 

  23. 23.

    Ma K, Sai H, Wiesner U (2012) J Am Chem Soc 134:13180

    Article  Google Scholar 

  24. 24.

    Burleigh MC, Markowitz MA, Spector MS, Gaber BP (2001) Chem Mater 13:4760

    Article  Google Scholar 

  25. 25.

    Burleigh MC, Markowitz MA, Spector MS, Gaber BP (2001) J Phys Chem B 105:9935

    Article  Google Scholar 

  26. 26.

    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, New York

Download references

Acknowledgments

This work was supported by The Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center and by Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research. M.B. acknowledges support from a Research and Development award. K.M. acknowledges funding by the National Science Foundation (NSF MPS/DMR-1008125).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Teeraporn Suteewong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suteewong, T., Ma, K., Drews, J.E. et al. Highly fluorescent sub 40-nm aminated mesoporous silica nanoparticles. J Sol-Gel Sci Technol 74, 32–38 (2015). https://doi.org/10.1007/s10971-014-3567-2

Download citation

Keywords

  • Mesoporous silica
  • Fluorescent
  • Amination