Journal of Sol-Gel Science and Technology

, Volume 74, Issue 1, pp 32–38 | Cite as

Highly fluorescent sub 40-nm aminated mesoporous silica nanoparticles

  • Teeraporn Suteewong
  • Kai Ma
  • Jennifer E. Drews
  • Ulrike Werner-Zwanziger
  • Josef Zwanziger
  • Ulrich Wiesner
  • Michelle S. Bradbury
Original Paper


We report the room temperature synthesis of highly fluorescent, sub-40 nm aminated mesoporous silica nanoparticles in water using triethanolamine (TEA) as catalyst. Co-condensation reactions between silica precursors, i.e., tetraethoxysilane and 3-aminopropyl triethoxysilane, allows the incorporation of amino moieties and conjugated fluorescent dye (tetramethylrhodamine-5(6)-isothiocyanate; TRITC) throughout the silica matrix. Resulting materials are characterized using a combination of transmission electron microscopy, nitrogen sorption measurements, dynamic light scattering, zeta potential measurements, thermogravimetric analysis, fluorescence correlation spectroscopy and solid-state 29Si-NMR spectroscopy. The TEA-catalyzed system leads to the formation of bright and discrete sub-40 nm aminated mesoporous silica nanoparticles with disordered pore structure and high organic content. Resulting nanomaterials may find use as simultaneous fluorescent probes and drug delivery vehicles in future theranostic applications.


Mesoporous silica Fluorescent Amination 



This work was supported by The Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center and by Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research. M.B. acknowledges support from a Research and Development award. K.M. acknowledges funding by the National Science Foundation (NSF MPS/DMR-1008125).


  1. 1.
    Piao Y, Burns A, Kim J, Wiesner U, Hyeon T (2008) Adv Funct Mater 18:3745CrossRefGoogle Scholar
  2. 2.
    Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 35:56CrossRefGoogle Scholar
  3. 3.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834CrossRefGoogle Scholar
  4. 4.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefGoogle Scholar
  5. 5.
    Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988CrossRefGoogle Scholar
  6. 6.
    He Q, Cui X, Cui F, GuoL, Shi J (2009) Microporous Mesoporous Mater 117:609Google Scholar
  7. 7.
    Lu F, Wu S, Hung Y, Mou C (2009) Small 5:1408CrossRefGoogle Scholar
  8. 8.
    Huh S, Wiench JW, Yoo JC, Pruski M, Lin VSY (2003) Chem Mater 15:4247CrossRefGoogle Scholar
  9. 9.
    Fowler CE, Khushalani D, Lebeau B, Mann S (2001) Adv Mater 13:649CrossRefGoogle Scholar
  10. 10.
    Moller K, Kobler J, Bein T (2007) Adv Funct Mater 17:605CrossRefGoogle Scholar
  11. 11.
    Moller K, Kobler J, Bein T (2007) J Mater Chem 17:624CrossRefGoogle Scholar
  12. 12.
    Qiao Z, Zhang L, Guo M, Liu M, Huo Q (2009) Chem Mater 21:3823CrossRefGoogle Scholar
  13. 13.
    Suzuki K, Ikari K, Imai H (2004) J Am Chem Soc 126:462CrossRefGoogle Scholar
  14. 14.
    Urata C, Aoyama Y, Tonegawa A, Yamauchi Y, Kuroda K (2009) Chem Commun 34:5094CrossRefGoogle Scholar
  15. 15.
    Kobler J, Moller K, Bein T (2008) ACS Nano 2:791CrossRefGoogle Scholar
  16. 16.
    Gu J, Fan W, Shimojima A, Okubo T (2007) Small 3:1740CrossRefGoogle Scholar
  17. 17.
    Lee C, Lo L, Mou C, Yang C (2008) Adv Funct Mater 18:1Google Scholar
  18. 18.
    Suteewong T, Sai H, Bradbury M, Estroff LA, Gruner SM, Wiesner U (2012) Chem Mater 24:3895CrossRefGoogle Scholar
  19. 19.
    Suteewong T, Sai H, Cohen R, Wang S, Bradbury M, Baird B, Gruner SM, Wiesner U (2011) J Am Chem Soc 133:172CrossRefGoogle Scholar
  20. 20.
    Brunauer S, Deming LS, Deming WE, Teller E (1940) J Am Chem Soc 62:1723CrossRefGoogle Scholar
  21. 21.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  22. 22.
    Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Chem Mater 20:2677CrossRefGoogle Scholar
  23. 23.
    Ma K, Sai H, Wiesner U (2012) J Am Chem Soc 134:13180CrossRefGoogle Scholar
  24. 24.
    Burleigh MC, Markowitz MA, Spector MS, Gaber BP (2001) Chem Mater 13:4760CrossRefGoogle Scholar
  25. 25.
    Burleigh MC, Markowitz MA, Spector MS, Gaber BP (2001) J Phys Chem B 105:9935CrossRefGoogle Scholar
  26. 26.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Teeraporn Suteewong
    • 1
    • 2
  • Kai Ma
    • 3
  • Jennifer E. Drews
    • 3
  • Ulrike Werner-Zwanziger
    • 4
  • Josef Zwanziger
    • 4
  • Ulrich Wiesner
    • 3
  • Michelle S. Bradbury
    • 1
  1. 1.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Chemical Engineering, Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.Department of Materials Science and EngineeringCornell UniversityIthacaUSA
  4. 4.Department of ChemistryDalhousie UniversityHalifaxCanada

Personalised recommendations