Skip to main content
Log in

Synthesis and fabrication of ZnO–CuO doped PVA and ZnO–PbO doped PVA nanocomposite films by using γ-radiolysis and it’s microbial sensor application

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The fabricated of ZnO–CuO doped PVA and ZnO–PbO doped PVA nanocomposite thin films for determination of Escherichia coli has been investigated. ZnO–CuO doped PVA and ZnO–PbO doped PVA nanocomposite thin films were fabricated by sol–gel spin coating method and were exposed to 60Co γ-radiation source at difference dose rate, between 0 and 30 kGy at room temperature. The resulting materials were investigated using X-ray diffraction, atomic force microscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), UV–visible spectroscopy and current–voltage (IV) measurement. The XRD spectra have been performed to observe the formation of crystal phases of all pure ZnO–CuO doped PVA and ZnO–PbO doped PVA thin films. The diffraction patterns reveal good crystalline quality. TEM and FESEM showed the uniform distribution of nanoparticles of metal oxides. Effect of γ-radiation on thin films decreased the crystallite size, surface morphology and grain size of thin films. UV–visible spectroscopy indicates the energy band gap, Eg decreased as the γ-radiation increased. The nanocomposite thin films prepared by γ-radiation can be applied to be used as biosensor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Van Dorst B, Mehtaa J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J (2010) Biosens Bioelectron 26:1178–1194

    Article  Google Scholar 

  2. Nayak M, Kotian A, Marathe S, Chakravortty D (2009) Biosens Bioelectron 25:661–667

    Article  Google Scholar 

  3. Kandpal M, Gundampati RK, Debnath M (2009) World Academy of Science, Engineering and Technology, p 58

  4. Kundu D, Gill A, Lui C, Goswami N, Holley R (2014) Meat Sci 96:413–418

    Article  Google Scholar 

  5. Chowdhury AD, De A, Chaudhuri CR, Bandyopadhyay K, Sen P (2012) Sens Actuators B 171–172:916–923

    Article  Google Scholar 

  6. Das M, Sumana G, Nagarajan R, Malhotra BD (2009) Thin Solid Films 519:1196–1201

    Article  Google Scholar 

  7. Jan T, Iqbal J, Ismail M, Badshah N, Mansoor Q, Arshad A, Ahkam QM (2014) Mater Sci Semicond Process 211:54–160

    Google Scholar 

  8. Redondo-Marugan J, Petit-Domingueza MD, Casero E, Vázquez L, García T, Parra-Alfambra AM, Lorenzo E (2013) Sens Actuators B 182:307–314

    Article  Google Scholar 

  9. Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margela S (2011) Colloids Surf A Physicochem Eng Asp 374:1–8

    Article  Google Scholar 

  10. Lee W, Park K-S, Kim Y-W, Lee WH, Choi J-W (2005) Biosens Bioelectron 20:2292–2299

    Article  Google Scholar 

  11. Jeon H-J, Yi S-C, Oh S-G (2003) Biomaterials 24:4921–4928

    Article  Google Scholar 

  12. Wan Jalal WN, Abdullah H, Zulfakar MS, Bais B, Shaari S, Islam MT (2013) Trans Indian Ceram Soc 72(4):215–224

    Article  Google Scholar 

  13. Abdullah H, Zulfakar MS, Wan Jalal WN, Islam MT, Shaari S (2013) J Sol–Gel Sci Technol. doi:10.1007/s10971-013-3202-7

    Google Scholar 

  14. Chahal RP, Mahendia S, Tomar AK, Kumar S (2012) J Alloys Compounds 538:212–219

    Article  Google Scholar 

  15. Alarcón J, Ponce S, Paraguay-Delgado F, Rodríguez J (2011) J Colloid Interface Sci 364:49–55

    Article  Google Scholar 

  16. Caglar Y, Oral DD, Caglar M, Ilican S, Thomas MA, Wu K, Sun Z, Cui J (2012) Thin Solid Films 520:6642–6647

    Article  Google Scholar 

  17. Habibi MH, Karimi B, Zendehdel M, Habibi M (2013) Spectrochim Acta Part A Mol Biomol Spectrosc 116:374–380

    Article  Google Scholar 

  18. Nalbant A, Ertek O, Okur I (2013) Mater Sci Eng B 178:368–374

    Article  Google Scholar 

  19. Raoufi D, Raoufi T (2009) Appl Surf Sci 255:5812–5817

    Article  Google Scholar 

  20. Thongsuriwong K, Amornpitoksuk P, Suwanboon S (2013) Adv Powder Technol 24:275–280

    Article  Google Scholar 

  21. Baydogan N, Ozdemir O, Cimenoglu H (2013) Radiat Phys Chem 89:20–27

    Article  Google Scholar 

  22. Raneesh B, Saha A, Kalarikkal N (2013) Radiat Phys Chem 89:28–32

    Article  Google Scholar 

  23. Smirnov M, Baban C, Rusu GI (2010) Appl Surf Sci 256:2405–2408

    Article  Google Scholar 

  24. Chand P, Gaur A, Kumar A, Gaur UK (2014) Appl Surf Sci 307:280–286

    Article  Google Scholar 

  25. Lupan O, Pauporté T, Chow L, Viana B, Pellé F, Ono LK, Cuenya BR, Heinrich H (2010) Appl Surf Sci 256:1895–1907

    Article  Google Scholar 

  26. Abu El-Fadl A, El-Maghraby EM, Mohamad GA (2004) Cryst Res Technol 39(2):143–150

    Article  Google Scholar 

  27. Al-Hamdani NA, Al-Alawy RD, Hassan SJ (2014) IOSR J Comput Eng 16(1):11–16

    Article  Google Scholar 

  28. El Zawawi IK, Khalil NR, Mahdy MA (2012) J Mater Sci Mater Electron 23:520–527

    Article  Google Scholar 

  29. Sharma G, Thind KS, Manupriya, Klare HS, Narang SB, Gerward L, Dangwal VK (2006) Nucl Instrum Methods Phys Res B 243:345–348

    Article  Google Scholar 

  30. Panigrahi J, Behera D, Mohanty I, Subudhi U, Nayak BB, Acharya BS (2011) Appl Surf Sci 258:304–311

    Article  Google Scholar 

  31. Dixit V, Tewari JC, Sharma BS (2006) Sens Actuators B 120:96–103

    Article  Google Scholar 

  32. Azmy NAN, Abdullah H, Naim NM, Hamid AA, Shaari S, Mokhtar WHMW (2014) Radiat Phys Chem 103:108–113

    Article  Google Scholar 

  33. Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P (2014) Colloids Surf B Biointerf 115:359–367

    Article  Google Scholar 

  34. Abdullah H, Naim NM, Azmy NAN, Hamid AA (2014) J Nanomater 2014:951640

    Google Scholar 

Download references

Acknowledgments

This project was supported by an Exploratory Research Grants Scheme (ERGS/1/2012/STG05/UKM/02/5), Islamic Educational, Scientific and Cultural Organization (ISESCO) (KK-2013-006), Photonic Technology Laboratory, Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia, School of Biosciences and Biotechnology, Faculty of Science and Technology, 43650 UKM, Bangi, Selangor, Malaysia and MINTect—SINAGAMA, Malaysia Nuclear Agency, Bangi, Selangor, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Azmy, N.A.N., Naim, N.M. et al. Synthesis and fabrication of ZnO–CuO doped PVA and ZnO–PbO doped PVA nanocomposite films by using γ-radiolysis and it’s microbial sensor application. J Sol-Gel Sci Technol 74, 15–23 (2015). https://doi.org/10.1007/s10971-014-3565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3565-4

Keywords

Navigation