Skip to main content
Log in

Preparation of Cu2ZnSnS4 thin films using spin-coating method with thermolysis and annealing

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) thin films are prepared using a spin-coating method with thermolysis and annealing on Mo-coated soda lime glass substrates. The thermogravimetric analysis, differential scanning calorimetry and Fourier transform infrared spectra of precursors are measured to identify the pyrolytic temperature of CZTS thin films. It is found that the decompositions of organics mainly occur before 280 °C. The phase compositions of prepared thin films are identified to be CZTS kesterites without other binary or ternary phase by X-ray diffractometer and Raman spectroscopy. It is observed through the scanning electron microscopy that there are not obvious carbon-rich layer in the interface and the CZTS thin films are composed of large densely packed grains. In addition, the structures of CZTS thin films are analyzed further by high-resolution transmission electron microscope and X-ray photoelectron spectroscopy. The resistivity and photoelectric response of CZTS thin film are also characterized, which demonstrate its potential for application in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Edoff M (2012) Ambio 41:112–118

    Article  Google Scholar 

  2. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Prog Photovolt Res Appl 20:12–20

    Article  Google Scholar 

  3. Schorr S (2007) Thin Solid Films 515:5985–5991

    Article  Google Scholar 

  4. Siebentritt S, Schorr S (2012) Prog Photovolt Res Appl 20:512–519

    Article  Google Scholar 

  5. Ki W, Hillhouse HW (2011) Adv Energy Mater 1:732–735

    Article  Google Scholar 

  6. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB (2013) Adv Energy Mater 4:1301465 (1–5)

  7. Wang H (2011) Int J Photoenergy 2011:1–10

    Article  Google Scholar 

  8. Chaudhuri TK, Tiwari D (2012) Sol Energy Mater Sol Cells 101:46–50

    Article  Google Scholar 

  9. Ilari GM, Fella CM, Ziegler C, Uhl AR, Romanyuk YE, Tiwari AN (2012) Sol Energy Mater Sol Cells 104:125–130

    Article  Google Scholar 

  10. Tanaka K, Fukui Y, Moritake N, Uchiki H (2011) Sol Energy Mater Sol Cells 95:838–842

    Article  Google Scholar 

  11. Rajesh G, Muthukumarasamy N, Subramaniam EP, Agilan S, Velauthapillai D (2013) J Sol-Gel Sci. Technol 66:288–292

    Article  Google Scholar 

  12. Park H, Hwang YH, Bae B-S (2013) J Sol-Gel Sci Technol 65:23–27

    Article  Google Scholar 

  13. Cao Y, Denny MS, Casper JV, Farneth WE, Guo Q, Ionkin AS, Johnson LK, Lu M, Malajovich I, Radu D (2012) J Am Chem Soc 134:15644–15647

    Article  Google Scholar 

  14. Fella CM, Uhl AR, Romanyuk YE, Tiwari AN (2012) Phys Status Solidi A 209:1043–1048

    Article  Google Scholar 

  15. Ahn S, Kim C, Yun JH, Gwak J, Jeong S, Ryu BH, Yoon K (2011) J Phys Chem C 114(17):8108–8113

    Article  Google Scholar 

  16. Guo Q, Ford GM, Yang WC, Hages CJ, Hillhouse HW, Agrawal R (2012) Sol Energy Mater Sol Cells 105:132–136

    Article  Google Scholar 

  17. Uhl AR, Fella C, Chirilă A, Kaelin MR, Karvonen L, Weidenkaff A, Borca CN, Grolimund D, Romanyuk YE, Tiwari AN (2012) Prog Photovolt Res Appl 20:526–533

    Article  Google Scholar 

  18. Redinger A, Berg DM, Dale PJ, Siebentritt S (2011) J Am Chem Soc 133:3320–3323

    Article  Google Scholar 

  19. Daengsakul S, Mongkolkachit C, Thomas C, Siri S, Thomas I, Amornkitbamrung V, Maensiri S (2009) Appl Phys A 96:691–699

    Article  Google Scholar 

  20. Wang Z, Richter SM, Gates BD, Grieme TA (2012) Org Process Res Dev 16:1994–2000

    Article  Google Scholar 

  21. Miller FA, Wilkins CH (1952) Anal Chem 24:1253

    Article  Google Scholar 

  22. Das K, Panda SK, Gorai S, Mishra P, Chaudhuri S (2008) Mater Res Bull 43:2742–2750

    Article  Google Scholar 

  23. Dunn J, Muzenda C (2001) Thermochim Acta 369:117–123

    Article  Google Scholar 

  24. Krunks M, Kijatkina O, Rebane H, Oja I, Mikli V, Mere A (2002) Thin Solid Films 403:71–75

    Article  Google Scholar 

  25. Majumder S (2009) Mater Sci-Poland 27:123–129

    Google Scholar 

  26. Wang YD, Ma CL, Sun XD, Li HD (2002) Nanotechnology 13:565–569

    Article  Google Scholar 

  27. Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S (2011) Sol Energy Mater Sol Cells 95:1421–1436

    Article  Google Scholar 

  28. Yoo H, Kim J (2011) Sol Energy Mater Sol Cells 95:239–244

    Article  Google Scholar 

  29. Schorr S (2011) Sol Energy Mater Sol Cells 95:1482–1488

    Article  Google Scholar 

  30. Fontané X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Pérez-Rodriguez A, Morante JR, Berg DM, Dale PJ, Siebentritt S (2011) Appl Phys Lett 98:181905

    Article  Google Scholar 

  31. El-Bahy GMS, El-Sayed BA, Shanana AA (2003) Vib Spectrosc 31:101–107

    Article  Google Scholar 

  32. Bott RC, Bowmaker GA, Davis CA, Hope GA, Jones BE (1998) Inorg Chem 37:651–657

    Article  Google Scholar 

  33. Flint CD, Goodgame M (1967) J Chem Soc A 1967:1718–1721

  34. Madarasz J, Bombicz P, Okuya M, Kaneko S (2001) Solid State Ion 141:439–446

    Article  Google Scholar 

  35. Lee D, Choi Y, Yong KJ (2010) J Cryst Growth 312:3665–3669

    Article  Google Scholar 

  36. Pawar BS, Pawar SM, Shin SW, Choi DS, Park CJ, Kolekar SS, Kim JH (2010) Appl Surf Sci 257:1786–1791

    Article  Google Scholar 

  37. Riha SC, Parkinson BA, Prieto AL (2009) J Am Chem Soc 131:12054–12055

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11372266 and 11272274), the Hunan Provincial Natural Science Foundation of China (No. 12JJ1007), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20114301110004), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (201143) and the Innovation Fund Project for Graduate Student of Hunan Province (No. CX2011B251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K.D., Tian, Z.R., Wang, J.B. et al. Preparation of Cu2ZnSnS4 thin films using spin-coating method with thermolysis and annealing. J Sol-Gel Sci Technol 73, 452–459 (2015). https://doi.org/10.1007/s10971-014-3561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3561-8

Keywords

Navigation