Skip to main content
Log in

Effect of chromium substitution on structural, magnetic and electrical properties of magneto-ceramic cobalt ferrite nano-particles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Single phase cobalt ferrite and chromium-substituted cobalt ferrite magneto-ceramic nano-powders are prepared by sol–gel self-combustion method. Chromium substitution is made within in the range of 10 mol% of iron in the cobalt ferrite powder. The XRD analysis of the prepared samples confirms the formation of single-phase nano-particles. Chromium substitution effect on the magnetic and electrical properties of cobalt ferrite nano-powders (in pellet form with high porosity) have been discussed. The effects are attributed to the mismatch between the magnetic moments of chromium and iron ions. In this paper we show that self-combustion method, without having to change the pH of precursor, is a simple and viable technique to synthesize cobalt ferrite nano-powders. Chromium substitution helps to tune the magnetic properties of cobalt ferrite. From AC dielectric permittivity analysis we observe that chromium substitution suppresses the small electrical relaxation peak at 1 MHz frequency of cobalt ferrite. This behavior can find application in magnetic storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sawatzky GA, Van der Woude F, Morrish AH (1968) J Appl Phys 39:1204

    Article  Google Scholar 

  2. Mohapatra S (2011) Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs. J Mater Chem 21:9185–9193

    Article  Google Scholar 

  3. Bate G (1975) In: Craik DJ (ed) Magnetic oxides, part 2. Wiley, New York, p 703

  4. Sharrock MP (1989) IEEE Trans Magn 25:4374

    Article  Google Scholar 

  5. Abe M, Gomi M (1990) Magneto-optical recording on garnet films. J Magn Magn Mater 84(3):222–228

    Article  Google Scholar 

  6. Ramos AV, Santos TS, Miao GX, Guittet M-J, Moussy J-B, Moodera JS (2008) Phys Rev B 78:180402

    Article  Google Scholar 

  7. Uday Bhasker S et al (2012) Preparation and characterization of cobalt magnesium nano ferrites using auto-combustion method. Adv Mater Res 584:280

    Article  Google Scholar 

  8. Ranvah N, Melikhov Y, Nlebedim IC, Jiles DC, Snyder JE, Moses AJ, Williams PI (2009) J Appl Phys 105:07A518

    Article  Google Scholar 

  9. Paulsen JA, Lo CCH, Snyder JE, Ring AP, Jones LL, Jiles DC (2003) IEEE Trans Magn 39(5):3316

    Article  Google Scholar 

  10. Srivastava M, Ojha AK, Chaubey S, Sharma PK, Pandey AC (2010) Mater Sci Eng B 175:14

    Article  Google Scholar 

  11. Reddy GK, Gunasekara K, Boolchand P, Smirniotis PG (2011) J Phys Chem C 115:920–930

    Article  Google Scholar 

  12. Singhal S (2012) J Mol Struct 1012:182–188

    Article  Google Scholar 

  13. Hankare PP, Sankpal UB, Patil RP, Mulla IS, Lokhande PD, Gajbhiye NS (2009) J Alloy Compd 485:798–801

    Article  Google Scholar 

  14. Cedeño-Mattei Y (2007) Optimization of magnetic properties in cobalt ferrite nanocrystals. In: ENS’07 Paris, France

  15. Rezlescu N, Rezlescu E, Pasnicu C, Craus ML (1994) Effects of rare-earth ions on some properties of a nickel-zincferrite. J Phys Condens Matter 234:114–117 (6:5716)

    Google Scholar 

  16. Zhou XD, Huebner W (2001) Appl Phys Lett 79:3512

    Article  Google Scholar 

  17. Rajendran M et al (2001) J Magn Magn Mater 232:71–83

    Article  Google Scholar 

  18. Templeton TL, Arrott AS, Curzon AE, Gee MA, Li X-Z, Yoshida Y, Schurer PJ, LaCombe JL (1993) J Appl Phys 73:6728–6730

    Article  Google Scholar 

  19. Berkowitz AE, Lahut JA, VanBuren CE (1980) Properties of magnetic fluid particles. IEEE Trans Magn 16(2):184–190

    Article  Google Scholar 

  20. Nogues J, Sort J, Langlias V, Skumryev V, Suriñach S, Muñoz JS, Baró MD (2005) Exchange bias in nanostructures. Phys Rep 422(3):65–117

    Article  Google Scholar 

  21. Berkowitz AE, Lahut JA, Jacobs IS, Levinson LM, Forester DW (1975) Spin pinning at ferrite-organic interfaces. Phys Rev Lett 34(10):594–597

    Article  Google Scholar 

  22. Ferreira JM (1988) Effect of Cr2+ ions on magnetic anisotropy of chromium chalcogenide spinels. QUIMICANOVA 11(1):107-111

  23. Wu CC, Kumarkrishna S, Mason TO (1981) Thermopower composition dependence in ferrospinels. J Solid State Chem 37:144-150

    Article  Google Scholar 

  24. Verwey EJW, Haymann PW, Romejin FC (1947) Physical properties and cation arrangement of oxides with spinel structures. II. Electronic conductivity. J Chem Phys 15:181-187

    Article  Google Scholar 

  25. Maxwell JC (1982) A treatise on electricity and magnetism. Clarendon Press, Oxford, p 328

    Google Scholar 

  26. Wagner KW (1913) Zur Theorie der unvollkommenen Dielektrika. Ann Phys 40:817-855

  27. Koop’s CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83:121–124

    Article  Google Scholar 

  28. Gonsalves LR Synthesis, characterization and solid state studies of Co–Zn and Co–Ni ferrites: a comparative study of the bulk with the nano. Ph.D. Thesis. http://shodhganga.inflibnet.ac.in/handle/10603/12690

  29. Krishna Surendra M (2011) Magnetic and dielectric properties study of cobalt ferrite nanoparticles synthesized by co-precipitation method. Mater Res Soc Symp Proc 1368. doi:10.1557/opl.2011.1281

  30. Zhou J-P (2010) Dielectric and magnetic properties of ZnO-doped cobalt ferrite. J Ceram Process Res 11(2):263-272

  31. Jeppson P (2006) Cobalt ferrite nanoparticles: Achieving the superpapramagnetic limit by chemical reduction. J Appl Phys 100(11):4324

  32. M Rajendran (2001) Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size. J Magn Magn Mater 232:71-83

Download references

Acknowledgments

One of the author, S. Uday Bhasker would like to thank R.K. Kotnala from NPL New Delhi India for VSM and Dielectric measurements. M.V.R.R. thanks UGC, New Delhi for providing financial assistance in the form of project [UGC-MRP, F.No.41-907/2012 (sr)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Uday Bhasker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uday Bhasker, S., Ramana Reddy, M.V. Effect of chromium substitution on structural, magnetic and electrical properties of magneto-ceramic cobalt ferrite nano-particles. J Sol-Gel Sci Technol 73, 396–402 (2015). https://doi.org/10.1007/s10971-014-3546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3546-7

Keywords

Navigation