Skip to main content
Log in

Bimetallic Fe/Mo–SiO2 aerogel catalysts for catalytic carbon vapour deposition production of carbon nanotubes

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Highly porous nanocomposite aerogels based on bimetallic Fe and Mo nanoparticles with a variable Fe:Mo weight ratio ranging from 5:1; 3:1; and 0.7:1 dispersed on amorphous silica were obtained. N2 physisorption, X-ray diffraction, and transmission electron microscopy indicate that the Fe/Mo–SiO2 nanocomposite aerogels as obtained by a co-gelation sol–gel route followed by supercritical drying and reduction treatment under H2 exhibit Fe and Mo nanocrystals with size in the range 4–10 and 15 nm, respectively, supported on highly porous silica. The catalytic performance of the Fe/Mo–SiO2 aerogels for the synthesis of multi wall carbon nanotubes (MWCNT) by catalytic chemical vapour deposition (CCVD) was evaluated in terms of amount and quality of the produced CNTs as assessed by gravimetric results, thermal analysis, and TEM. The effect of catalyst composition and CCVD temperature was investigated, pointing out that high reaction temperatures (800 °C) favor the formation of MWCNTs with high quality in elevated yield, the highest C uptake value being >400 %. Catalyst composition and CCVD temperature were also found to affect the homogeneity of CNT morphology, the best MWCNT quality (with outer diameter 23–25 nm) being achieved at 800 °C with the catalyst having the largest Mo content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Corrias A, Casula MF (2010) Aerogel handbook. In: Aegerter M, Leventis N, Koebel M (eds) Aerogels containing metal, alloy and oxide nanoparticles in dielectric matrices. Springer, New York

    Google Scholar 

  2. Vallribera A, Molins E (2008) Nanoparticles and catalysis. In: Astruc D (ed) Aerogel supported nanoparticles in catalysis. Wiley, Weinheim

    Google Scholar 

  3. Pierre AC, Rigacci A (2010) Aerogel handbook. In: Aegerter M, Leventis N, Koebel M (eds) SiO2 aerogels. Springer, New York

    Google Scholar 

  4. Cutrufello MG, Rombi E, Ferino I, Loche D, Corrias A, Casula MF (2011) J Sol–Gel Sci Technol 60:324–332

    Article  Google Scholar 

  5. Vanyorek L, Loche D, Katona H, Casula MF, Corrias A, Konya Z, Kukovecz A, Kiricsi I (2011) J Phys Chem C 115:5894–5902

    Article  Google Scholar 

  6. Boi FS, Mountjoy G, Wilson RM, Luklinska Z, Sawiak LJ, Baxendale M (2013) Carbon 64:351–358

    Article  Google Scholar 

  7. Falqui A, Loche D, Casula MF, Corrias A, Gozzi D, Latini A (2011) J Nanosci Nanotechnol 11:2215–2225

    Article  Google Scholar 

  8. Hernadi K, Fonseca A, Nagy JB, Bernaerts D (1998) Materials science, supercarbon. In: Yoshimura S, Chang RPH (eds) Catalytic synthesis of carbon nanotubes. Springer, Heidelberg

    Google Scholar 

  9. Hafner JH, Bronikowsky MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith KA, Smalley RE (1998) Chem Phys Lett 296:195–203

    Article  Google Scholar 

  10. Bacsa RR, De Parseval P, Martin F, Serp P (2013) Carbon 64:219–224

    Article  Google Scholar 

  11. Xu X, Hung S, Yang Z, Zou C, Jiang J, Shang Z (2011) Mater Chem Phys 127:379–384

    Article  Google Scholar 

  12. Ciocan CE, Dumitriu E, Cacciaguerra T, Fajula F, Hulea V (2011) Catal Today 198:239–245

    Article  Google Scholar 

  13. Yeoh WM, Lee KY, Chai SP, Lee KT, Mohamed AR (2013) J Phys Chem Solids 74:1553–1559

    Article  Google Scholar 

  14. Xu Y, Huang W, Shi Q, Zhang Y, Song L, Zhang Y (2012) J Sol–Gel Sci Technol 64:493–499

    Article  Google Scholar 

  15. Du A, Zhou B, Zhong Y, Zhu X, Gao G, Wu G, Zhang Z, Shen J (2011) J Sol–Gel Sci Technol 58:225–231

    Article  Google Scholar 

  16. Gutbrod K, Zollfrank C (2013) J Sol–Gel Sci Technol 66:112–119

    Article  Google Scholar 

  17. Loche D, Casula MF, Falqui A, Marras S, Corrias A (2010) J Nanosci Nanotechnol 10:1008–1016

    Article  Google Scholar 

  18. Refat MS, Sadeek SA, Teleb SM (2004) Argent Chem Soc 92:23–29

    Google Scholar 

  19. Klug HP, Alexander LE (1974) X-ray diffraction procedures. Wiley, New York

    Google Scholar 

  20. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  Google Scholar 

  21. Barret EP, Joiner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  Google Scholar 

  22. Card 6-696, PDF-2 JCPDS International Centre for Diffraction Data, Swarthmore, PA

  23. Card 42-1120, PDF-2 JCPDS International Centre for Diffraction Data, Swarthmore, PA

  24. Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, London

    Google Scholar 

  25. Mohite DP, Larimore ZJ, Lu H, Mang JT, Sotiriou-Leventis C, Leventis N (2012) Chem Mater 24:3434–3448

    Article  Google Scholar 

  26. Mohite DP, Mahadik-Khanolkar S, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Soft Matter 9:1531–1539

    Article  Google Scholar 

  27. Landi BJ, Cress CD, Evans CM, Raffaelle RP (2005) Chem Mater 17:6819

    Article  Google Scholar 

  28. Carta D, Casula MF, Corrias A, Falqui A, Dombovári Á, Gálos A, Kónya Z (2011) J Nanosci Nanotechnol 11:6735–6746

    Article  Google Scholar 

  29. Card 41-1487,PDF-2 JCPDS International Centre for Diffraction Data, Swarthmore, PA

  30. Card 35-787, PDF-2 JCPDS International Centre for Diffraction Data, Swarthmore, PA

  31. Deng WQ, Xu X, Goddard WA (2004) Nano Lett 4(12):2331–2335

    Article  Google Scholar 

  32. Zheng B, Li Y, Liu J (2002) Appl Phys A 74:345–348

    Article  Google Scholar 

  33. Pèrez-Mendoza M, Vallès C, Maser WK, Martìnez MT, Benito AM (2005) Nanotechnology 16:S224–S229

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the MAE-Ministero degli Affari Esteri, Direzione Generale per la Promozione del Sistema Paese, and by the Regione Autonoma della Sardegna (L.R.7/2007) through Projects CRP-18013 and CRP-26449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Francesca Casula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marras, C., Loche, D., Corrias, A. et al. Bimetallic Fe/Mo–SiO2 aerogel catalysts for catalytic carbon vapour deposition production of carbon nanotubes. J Sol-Gel Sci Technol 73, 379–388 (2015). https://doi.org/10.1007/s10971-014-3544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3544-9

Keywords

Navigation