Skip to main content

Advertisement

Log in

The enhanced photocatalytic activity of Zn2+ doped TiO2 for hydrogen generation under artificial sunlight irradiation prepared by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Novel Zn2+ doped TiO2 photocatalysts were synthesized by a simple sol–gel method. X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma optical emission spectrometry, Brunauer–Emmett–Teller method and Photoluminescence spectra were employed to examine the phase structure, morphology and optical properties of the synthesized samples. Their photocatalytic activities were evaluated by spitting water under artificial sunlight irradiation. In contrast with pure TiO2, the Zn2+–TiO2 samples showed enhanced photocatalytic properties. When TiO2 was doped with 1 wt% Zn2+, it showed the optimal photocatalytic activity with the amount of hydrogen evolution of 180 μmol h−1, which was as about seven times as that for pure TiO2. For the Zn2+–TiO2, Zn2+ can improve the separation ratio of photoexcited electrons–holes and leads to the high photocatalytic activity of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu JG, Yu XX (2008) Environ Sci Technol 42:4902–4907

    Article  Google Scholar 

  2. Ksibi M, Rossignol S, Tatibouet JM, Trapalis C (2008) Mater Lett 62:4204–4206

    Article  Google Scholar 

  3. Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) J Phys Chem C 111:14992–14997

    Article  Google Scholar 

  4. Yu JG, Yu XX, Huang BB, Zhang XY, Dai Y (2009) Cryst Growth Des 9:1474–1480

    Article  Google Scholar 

  5. Yu JG, Ran JR (2011) Energy Environ Sci 4:1364–1371

    Article  Google Scholar 

  6. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  Google Scholar 

  7. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243–2245

    Article  Google Scholar 

  8. Yin S, Zhang Q, Saito F, Sato T (2003) Chem Lett 32:358–359

    Article  Google Scholar 

  9. Ye HP, Lub SM (2013) Appl Surf Sci 270:741–745

    Article  Google Scholar 

  10. Zhou X, Shi TJ, Zhou HO (2012) Appl Surf Sci 258:6204–6211

    Article  Google Scholar 

  11. Wan X, Yuan M, Tiea SL, Lan S (2013) Appl Surf Sci 277:40–46

    Article  Google Scholar 

  12. Chauhan R, Kumarb A, Chaudhary RP (2013) Appl Surf Sci 270:655–660

    Article  Google Scholar 

  13. Zhang HL, Wei B, Zhu L, Yu JH, Sun WJ, Xu LL (2013) Appl Surf Sci 270:133–138

    Article  Google Scholar 

  14. Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Wei JY, Whangbo MH (2008) Angew Chem Int Ed 47:7931–7933

    Article  Google Scholar 

  15. Wang C, Yan J, Wu XY, Song YH, Cai GB, Xu H, Zhu JX, Li HM (2013) Appl Surf Sci 273:159–166

    Article  Google Scholar 

  16. Wang J, Yin S, Zhang Q, Saito F, Sato T (2003) J Mater Chem 13:2348–2352

    Article  Google Scholar 

  17. Nerud F, Baldrian P, Gabriel J, Ogbeifun D (2001) Chemosphere 44:957–961

    Article  Google Scholar 

  18. Chen XB, Liu L, Yu PY, Mao SS (2011) Science 331:746–750

    Article  Google Scholar 

  19. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69–96

    Article  Google Scholar 

  20. Falch A, Kriek RJ (2013) J Photochem Photobiol A 271:117–123

    Article  Google Scholar 

  21. Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) J Photochem Photobiol A 186:242–247

    Article  Google Scholar 

  22. Korzhak AV, Ermokhina NI, Stroyuk AL, Bukhtiyarov VK, Raevskaya AE, Litvin VI, Kuchmiy SY, Ilyin VG, Manorik PA (2008) J Photochem Photobiol A 198:126–134

    Article  Google Scholar 

  23. Elouali S, Mills A, Parkin IP, Bailey E, McMillan PF, Darr JA (2010) J Photochem Photobiol A 216:110–114

    Article  Google Scholar 

  24. Melo MDO, Silva LA (2011) J Photochem Photobiol A 226:36–41

    Article  Google Scholar 

  25. Vijayan P, Mahendiran C, Suresh C, Shanthi K (2009) Catal Today 141:220–224

    Article  Google Scholar 

  26. Paola AD, Lopez EG, Ikeda S, Marci G, Ohtani B, Palmisano L (2002) Catal Today 75:87–93

    Article  Google Scholar 

  27. Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669–13679

    Article  Google Scholar 

  28. Ohno T, Tanigawa F, Fujihara K (1999) J Photochem Photobiol A 127:107–110

    Article  Google Scholar 

  29. Yin S, Aita Y, Komatsu M, Wang JS, Tang Q, Sato T (2005) J Mater Chem 15:674–682

    Article  Google Scholar 

  30. Li KY, Li YJ, Xue DF (2012) Funct. Mater Lett 5:2600021–2600025

    Google Scholar 

  31. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33–177

    Article  Google Scholar 

  32. Mohapatra SK, Kondamudi N, Banerjee S, Misra M (2008) Langmuir 24:11276–11281

    Article  Google Scholar 

  33. Hanaor DAH, Sorrell CC (2011) J Mater Sci 46:855–874

    Article  Google Scholar 

  34. Primo A, Corma A, Garcia H (2011) Phys Chem Chem Phys 13:886–910

    Article  Google Scholar 

  35. Kisch H, Macyk W (2002) ChemPhysChem 3:399–400

    Article  Google Scholar 

  36. Ao YH, Xu JJ, Fu DG, Yuan CW (2009) J Hazard Mater 167:413–417

    Article  Google Scholar 

  37. Elghniji K, Atyaoui A, Livraghi S, Bousselmi L, Giamello E, Ksibi M (2012) J Alloys Compd 541:421–427

    Article  Google Scholar 

  38. Ambrus Z, Balázs N, Alapi T, Wittmann G, Sipos P, Dombi A, Mogyorósi K (2008) App Catal B Environ 81:27–37

    Article  Google Scholar 

  39. Zhang JY, Zhao ZY, Wang XY, Yu T, Guan J, Yu ZT, Li ZS, Zou ZG (2010) J Phys Chem C 114:18396–18400

    Article  Google Scholar 

  40. Rumiz AK, Woicik JC, Cockayen E, Lin HY, Jaffari GH, Shah SI (2009) Appl Phys Lett 95:262111–262113

    Article  Google Scholar 

  41. Chen XB, Burda C (2004) J Phys Chem B 108:15446–15449

    Article  Google Scholar 

  42. Palmqvist AEC, Wirde M, Gelius U, Muhammed M (1999) Nanostruct Mater 11:995–1007

    Article  Google Scholar 

  43. Nagaveni K, Hegde MS, Madras G (2004) J Phys Chem B 108:20204–20212

    Article  Google Scholar 

  44. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) J Phys Chem Sol 63:1909–1920

    Article  Google Scholar 

  45. Zhu J, Chen F, Zhang J, Chen H, Anpo M (2006) J Photochem Photobiol A 180:196–204

    Article  Google Scholar 

  46. Li Q, Guo BD, Yu JG, Ran JR, Zhang BH, Yan HJ, Gong JR (2011) J Am Chem Soc 133:10878–10884

    Article  Google Scholar 

  47. Yu JG, Zhang J, Liu SW (2010) J Phys Chem C 114:13642–13649

    Article  Google Scholar 

  48. Zheng YH, Chen CQ, Zhan YY, Lin XY, Zheng Q, Wei KM, Zhu JF (2007) Inorg Chem 46:6675–6682

    Article  Google Scholar 

  49. Huang CY, You WS, Dang LQ, Lei ZB, Sun ZG, Zhang LC (2006) Chin J Catal 27:203–209

    Article  Google Scholar 

  50. Zhang Y, Xu H, Xu Y, Zhang H, Wang Y (2005) J Photochem Photobiol A 170:279–285

    Article  Google Scholar 

  51. Linic S, Christopher P, Ingram DB (2011) Nat Mater 10:911–921

    Article  Google Scholar 

  52. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Energy Environ Sci 2:1231–1257

    Article  Google Scholar 

  53. Takai A, Kamat PV (2011) ACS Nano 5:7369–7376

    Article  Google Scholar 

  54. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Whangbo M-H (2011) J Mater Chem 21:9079–9908

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51262028), Fundamental Research Funds for the Gansu Universities, Natural Science Foundation of Gansu Province (1107RJZA194), Program for Changjiang Scholars and Innovative Research Team in University (IRT1177) and Young Teacher Research Foundation of Northwest Normal University (NWNU-LKQN-11-17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qizhao Wang or Haohao Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yun, G., An, N. et al. The enhanced photocatalytic activity of Zn2+ doped TiO2 for hydrogen generation under artificial sunlight irradiation prepared by sol–gel method. J Sol-Gel Sci Technol 73, 341–349 (2015). https://doi.org/10.1007/s10971-014-3538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3538-7

Keywords

Navigation