Skip to main content
Log in

Sol–gel synthesis and investigation of structural, electrical and magnetic properties of Pb doped La0.1Bi0.9FeO3 multiferroics

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A sol–gel based auto-combustion technique has been employed to synthesize polycrystalline La0.1Bi0.9−xPbxFeO3 (x = 0.0, 0.05, 0.10, 0.20, 0.30) ceramics. The samples have been characterized by X-ray diffraction, scanning electron microscopy, an LCR-meter and a vibrating sample magnetometer for their structural and morphological features, as well as electrical and magnetic properties, respectively. The structural analysis revealed that when Pb was doped at Bi-sites in La0.1Bi0.90FeO3, the host retained the rhombohedrally distorted perovskite structure, attributed to the non centro-symmetric space group R3c. The surface morphological studies revealed that the grain size was increased and formed agglomerates at high concentrations of Pb contents. The dielectric parameters displayed conventional ferrite behavior depicting high values at low frequencies and decreasing with rise in frequencies, leading to constant values at still higher frequencies. The magnetic properties were changed non-monotonically with increasing Pb concentration. This non-monotonical behavior with increasing Pb could be attributed to the canting of the antiferromagnetic spins in BiFeO3 based multiferroics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kreisel J, Kenzelmann M (2009) Europhys News 40:17

    Article  Google Scholar 

  2. Khomskii D (2009) Phys Today 20:1

    Google Scholar 

  3. Cheong SW, Mostovoy M (2007) Nat Mater 6:13

    Article  Google Scholar 

  4. Khomskii DI (2006) J Magn Magn Mater 306:1

    Article  Google Scholar 

  5. Khomchenko VA, Kiselev DA, Vieira JM, Rubinger RM, Sobolev NA, Kopcewicz M, Shvartsman VV, Borisov P, Kleemann W, Kholkin AL (2008) J Phys Condens Mater 20:155207

    Article  Google Scholar 

  6. Spaldin NA, Cheong SW, Ramesh R (2010) Phys Today 63:38

    Article  Google Scholar 

  7. Ramesh R, Spaldin NA (2007) Nat Mater 6:21

    Article  Google Scholar 

  8. Kadomtseva AM, Zvezdin AK, Popov YF, Pyatakov AP, Vorob’ev GP (2004) JETP Lett 79:0571

    Article  Google Scholar 

  9. Sergienko IA, Dagotto E (2006) Phys Rev B 73:094434

    Article  Google Scholar 

  10. Ruette B, Zvyagin S, Pyatakov AP, Bush A, Li JF, Belotelov VI, Zvezdin AK, Viehland D (2004) Phys Rev B 69:064114

    Article  Google Scholar 

  11. Bai F, Wang J, Wutting M, Li JF, Wang N, Pyatakov AP, Zvezdin AK, Cross LE, Viehl D (2005) Appl Phys Lett 86:032511

    Article  Google Scholar 

  12. Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M (2005) J Am Chem Soc 127:8889

    Article  Google Scholar 

  13. Palkar VR, Kundaliya DC, Malik SK, Bhattacharya S (2004) Phys Rev B 69:212102

    Article  Google Scholar 

  14. Yuan GL, Or SW, Liu JM, Liu ZG (2006) Appl Phys Lett 89:052905

    Article  Google Scholar 

  15. Yuan GL, Or SW (2006) J Appl Phys 100:024109

    Article  Google Scholar 

  16. Uniyal P, Yadav KL (2009) J Phys Condens Matter 21:405901

    Article  Google Scholar 

  17. Khomchenko VA, Kiselev DA, Kopcewicz M, Maglione M, Shvartsman VV, Borisov P, Kleemann W, Lopes AML, Pogorelov YG, Araujo JP, Rubinger RM, Sobolev NA, Vieira JM, Kholkin AL (2009) J Magn Magn Mater 321:1692

    Article  Google Scholar 

  18. Khomchenko VA, Kiselev DA, Vieira JM, Khalkin AL (2007) Phys Rev 90:242901

    Google Scholar 

  19. Khomchenko VA, Kiselev DA, Selezneva KE, Vieira JM, Aravjo JP, Kholkin AL (2008) Mater Lett 62:1927

    Article  Google Scholar 

  20. Troyanchunk IO, Bushinsky MV, Karpinsky DV, Sirenkc V, Silkolenko V, Elimor V (2010) Europhys Rev 73:375

    Google Scholar 

  21. Mazumder R, Sen A (2009) J Alloys Compd 475:577

    Article  Google Scholar 

  22. Zhang X, Sui Y, Wang X, Tang J, Su W (2009) J Phys Condens Matter 105:07D918

    Google Scholar 

  23. Ge JJ, Xue XB, Cheng GF, Yang M, You B, Zhang W, Wu XS, Hu A, Du J, Zhang SJ, Zhou SM, Wang Z, Yang B, Sun L (2011) J Phys Condens Matter 324:200

    Google Scholar 

  24. Ederer C, Spaldin NA (2005) Phys Rev B 71:224103

    Article  Google Scholar 

  25. Khomchenko VA, Kiselev DA, Vieira JM, Jian L, Kholkin AL, Lopes ALM, Pogorelov YG, Araujo JP, Maglione M (2008) J Appl Phys 103:024105

    Article  Google Scholar 

  26. Wang N, Cheng J, Pyatakov A, Zvezdin AK, Li JF, Cross LE, Viehland D (2005) Phys Rev B 72:104434

    Article  Google Scholar 

  27. Reetu, Agarwal A, Sanghi S, Ashima (2011) J Appl Phys 110:073909

  28. Wagner KW (1913) Ann Phys 40:817

    Article  Google Scholar 

  29. Sahu JR, Rao CNR (2007) Solid State Sci 9:950

    Article  Google Scholar 

  30. Bhushan B, Basumallick A, Vasanthacharya NY, Kumar S, Das D (2010) Solid State Sci 12:1063

    Article  Google Scholar 

  31. Li Y, Yu J, Li J, Zheng C, Wu Y, Zhao Y, Wang M, Wang Y (2011) J Mater Sci Mater Electron 22:323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Atiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafoor, I., Siddiqi, S.A., Atiq, S. et al. Sol–gel synthesis and investigation of structural, electrical and magnetic properties of Pb doped La0.1Bi0.9FeO3 multiferroics. J Sol-Gel Sci Technol 74, 352–356 (2015). https://doi.org/10.1007/s10971-014-3517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3517-z

Keywords

Navigation