Advertisement

Journal of Sol-Gel Science and Technology

, Volume 73, Issue 3, pp 527–530 | Cite as

Topotactic reductive fluorination of strontium cobalt oxide epitaxial thin films

  • Tsukasa Katayama
  • Akira Chikamatsu
  • Yasushi Hirose
  • Tomoteru Fukumura
  • Tetsuya Hasegawa
Original Paper

Abstract

Since the discovery of oxyfluoride cuprate superconductors, many efforts have been made to search for new transition-metal oxyfluoride compounds. Recently, the topotactic fluorination reaction using polyvinylidene fluoride (PVDF) has gained attention because of the low-temperature synthesis of oxyfluorides. In this study, we report the fabrication of SrCoO x F y epitaxial thin films via topotactic fluorination of SrCoO2.5 precursor films with PVDF. X-ray diffraction analysis showed that the SrCoO x F y film, with an anion-vacant perovskite structure, was obtained by fluorination at 150 °C and that the in-plane lattice constant was completely dependent on the substrate. Energy dispersive X-ray spectrometry revealed that the chemical composition of the fluorinated film was SrCoO1.9±0.4F0.5±0.1 and X-ray photoemission spectroscopy showed that the Co ions had a mixed valence state of 2+ and 3+. This valence state was smaller than that in the SrCoO2.5 precursor film, indicating that PVDF acted as a reductive fluorinating agent for the SrCoO2.5 film. Moreover, the SrCoO1.9±0.4F0.5±0.1 film did not exhibit ferromagnetism even at 10 K, suggesting the presence of an antiferromagnetic interaction between the Co ions.

Keywords

Topotactic reaction Epitaxial thin film Oxyfluorides Transition-metal compounds Pulsed-laser deposition 

Notes

Acknowledgments

We thank Prof. Kimikazu Sasa, Mr. Satoshi Ishii, Dr. Hiroshi Naramoto, and Dr. Daiichiro Sekiba of the University of Tsukuba, and Prof. Katsuyuki Fukutani of the University of Tokyo for their assistance in the NRA measurements. This work was partially supported by Nippon Sheet Glass Foundation for Materials Science and Engineering. EDS measurements were conducted in the Research Hub for Advanced Nano Characterization, at the University of Tokyo, and supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

  1. 1.
    Ai-Mamouri M, Edwards PP, Greaves C, Slaski M (1994) Nature 369:382–384CrossRefGoogle Scholar
  2. 2.
    Sullivan E, Greaves C (2012) Mater Res Bull 47:2541–2546CrossRefGoogle Scholar
  3. 3.
    Shinawi HE, Marco JF, Berry FJ, Greaves C (2010) J Mater Chem 20:3253–3259CrossRefGoogle Scholar
  4. 4.
    Mentré O, Kabbour H, Ehora G, Tricot G, Daviero-Minaud S, Whangbo MH (2010) J Am Chem Soc 132:4865–4875CrossRefGoogle Scholar
  5. 5.
    Ehora G, Renard C, Deviero-Minaud S, Mentré O (2007) Chem Mater 19:2924–2926CrossRefGoogle Scholar
  6. 6.
    Tsujimoto Y, Li JJ, Yamaura K, Matsushita Y, Katsuya Y, Tanaka M, Shirako Y, Akaogi M, Takayama-Muramachi E (2011) Chem Commun 47:3263–3265CrossRefGoogle Scholar
  7. 7.
    Tsujimoto Y, Sathish CI, Hong KP, Oka K, Azuma M, Guo Y, Matsushita Y, Yamaura K, Takayama-Muromachi E (2012) Inorg Chem 51:4802–4809CrossRefGoogle Scholar
  8. 8.
    Luo K, Tran TT, Halasyamani PS, Hayward MA (2013) Inorg Chem 52:13762–13769CrossRefGoogle Scholar
  9. 9.
    Itoh M, Natori I, Kubota S, Motoya K (1994) J Phys Soc Jpn 63:1486–1493CrossRefGoogle Scholar
  10. 10.
    Fuchs D, Schweiss P, Adelmann P, Schwarz T, Schneider R (2005) Phys Rev B 72:014466CrossRefGoogle Scholar
  11. 11.
    Slater PR (2002) J Fluorine Chem 117:43–45CrossRefGoogle Scholar
  12. 12.
    Kobayashi Y, Tian M, Eguchi M, Mallouk TE (2009) J Am Chem Soc 131:9849–9855CrossRefGoogle Scholar
  13. 13.
    Berry FJ, Heap R, Helgason Ö, Moore EA, Shim S, Slater PR, Thomas MF (2008) J Phys: Condens Matter 20:215207Google Scholar
  14. 14.
    Katayama T, Chikamatsu A, Hirose Y, Takagi R, Kamisaka H, Fukumura T, Hasegawa T (2014) J Mater Chem C 2:5350–5356Google Scholar
  15. 15.
    Moon EJ, Xie Y, Laird ED, Keavney DJ, Li CY, May SJ (2014) J Am Chem Soc 136:2224–2227CrossRefGoogle Scholar
  16. 16.
    Jeen H, Choi WS, Biegalski MD, Folkman CM, Tung I, Fong DD, Freeland JW, Shin D, Ohta H, Chisholm MF, Lee HN (2013) Nat Mater 12:1057–1063CrossRefGoogle Scholar
  17. 17.
    Brown ID, Altermatt D (1985) Acta Cryst B41:244–247CrossRefGoogle Scholar
  18. 18.
    Chainani A, Mathew M, Sarma DD (1992) Phys Rev B 46:9976CrossRefGoogle Scholar
  19. 19.
    Munakata F, Takahashi H, Akimune Y (1997) Phys Rev B 56:979CrossRefGoogle Scholar
  20. 20.
    Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257:2717–2730CrossRefGoogle Scholar
  21. 21.
    Shanon RD (1976) Acta Cryst A 32:751–767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tsukasa Katayama
    • 1
  • Akira Chikamatsu
    • 1
    • 2
  • Yasushi Hirose
    • 1
    • 2
    • 3
  • Tomoteru Fukumura
    • 1
    • 2
  • Tetsuya Hasegawa
    • 1
    • 2
    • 3
  1. 1.Department of ChemistryThe University of TokyoBunkyo-kuJapan
  2. 2.CREST, Japan Science and Technology Agency (JST)Bunkyo-kuJapan
  3. 3.Kanagawa Academy of Science and Technology (KAST)Kawasaki, KanagawaJapan

Personalised recommendations