Skip to main content
Log in

Silica-gadolinium particles loaded with gossypol for simultaneous therapeutic effect and MRI contrast enhancement

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Gossypol is a polyphenolic compound with a wide range of therapeutic properties. The incorporation of gossypol in a porous gadolinium-silica matrix was considered for both therapeutic effect and contrast in magnetic resonance imaging. The purpose of the study was to evaluate gossypol loading in silica-gadolinium particles prepared at different pH values, as a first step in designing new theranostic (therapeutic and diagnostic) compounds. Silica-gadolinium particles of 98SiO2·2Gd2O3 (mol%) composition were prepared following the sol–gel route. The structure of the particles and their loading with gossypol were investigated by X-ray diffraction, dynamic light scattering, Brunauer–Emmett–Teller analysis, differential thermal analysis, Fourier transform infrared spectroscopy, electron paramagnetic resonance and X-ray photoelectron spectroscopy. All results confirmed the highest loading of gossypol on the surface of the particles synthesised at lower pH. The potential application in magnetic resonance imaging (MRI) of silica-gadolinium particles loaded with gossypol was tested through MRI measurements that showed improved contrast properties compared with the pristine silica-gadolinium particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534

    Article  Google Scholar 

  2. Lu J, Li Z, Zink JI, Tamanoi F (2012) In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomed Nanotechnol 8:212–220

    Article  Google Scholar 

  3. Chen NT, Cheng SH, Souris JS, Chen CT, Mou CY, Lo LW (2013) Theranostic applications of mesoporous silica nanoparticles and their organic/inorganic hybrids. J Mater Chem B 1:3128–3135

    Article  Google Scholar 

  4. Figueiredo S, Moreira JN, Geraldes CF, Aime S, Terreno E (2011) Supramolecular protamine/Gd-loaded liposomes adducts as relaxometric protease responsive probes. Bioorgan Med Chem 19:1131–1135

    Article  Google Scholar 

  5. Viswanathan S, Kovacs Z, Green KN, Ratnakar SJ, Sherry AD (2010) Alternatives to gadolinium-based mri metal chelates. Chem Rev 110:2960–3018

    Article  Google Scholar 

  6. Shokrollahi H (2013) Contrast agents for MRI. Mater Sci Eng C 33:4485–4497

    Article  Google Scholar 

  7. Lin YS, Hung Y, Su JK, Lee R, Chang C, Lin ML, Mou CY (2004) Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. J Phys Chem B 108:15608–15611

    Article  Google Scholar 

  8. Fricker SP (2006) The therapeutic application of lanthanides. Chem Soc Rev 35:524–533

    Article  Google Scholar 

  9. Wang P, Zou XM, Huang J, Zhang TL, Wang K (2011) Gadolinium inhibits prostate cancer PC3 cell migration and suppresses osteoclast differentiation in vitro. Cell Biol Int 35:1159–1167

    Article  Google Scholar 

  10. Zhang XQ, Huang XF, Mu SJ, An QX, Xia AJ, Chen R, Wu DC (2010) Inhibition of proliferation of prostate cancer cell line, PC-3, in vitro and in vivo using (−)-gossypol. Asian J Androl 12:390–399

    Article  Google Scholar 

  11. Dodou K (2005) Investigations on gossypol: past and presents developments. Expert Opin Inv Drug 14:1419–1434

    Article  Google Scholar 

  12. Nguyen NT, Tran LD, Le DQ, Pham DG, Nguyen PX, Park JS, Park JK (2012) A novel chitosan-gossypol based nanocarrier for anticancer curcumin drug delivery. J Chitin Chitosan 2012(17):63–67

    Google Scholar 

  13. Zhai G, Wu J, Zhao X, Yu B, Li H, Lu Y, Ye W, Lin YC, Lee RJ (2008) A liposomal delivery vehicle for the anticancer agent gossypol. Anticancer Res 28:2801–2806

    Google Scholar 

  14. Fairley N, Carrick A (2005) The casa cookbook—part I: recipes for XPS data processing. Acolyte Science, Knutsford, Cheshire, England

    Google Scholar 

  15. Sandberg WJ, Lag M, Holme JA, Friede B, Gualtieri M, Kruszewski M, Schwarze PE, Skuland T, Refsnes M (2012) Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages. Part Fibre Toxicol 9:1–13

    Article  Google Scholar 

  16. Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19

    Article  Google Scholar 

  17. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems: a review (part 2). Trop J Pharm Res 12:265–273

    Google Scholar 

  18. Weiss LC, Thibodeaux DP (1984) Separation of seed by-products by an AC electric field. J Am Oil Chem Soc 61:886–890

  19. Kuk MS, Tetlow R (2005) Gossypol removal by adsorption from cottonseed miscella. J Am Oil Chem Soc 82:905–909

    Article  Google Scholar 

  20. Campbell KN, Morris RC, Adams R (1937) The structure of gossypol. I. J Am Chem Soc 59:1723–1728

    Article  Google Scholar 

  21. Shen YL, Yang SH, Wu LM, Ma XY (2005) Study on structure and characterization of inclusion complex of gossypol/beta cyclodextrin. Spectrochim Acta A 61:1025–1028

    Article  Google Scholar 

  22. Kenar JA (2006) Reaction chemistry of gossypol and its derivatives. J Am Oil Chem Soc 83:269–302

    Article  Google Scholar 

  23. Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and RSi(OR)3 precursors. J Mol Struct 919:140–145

    Article  Google Scholar 

  24. Martinez JR, Ruiz F, Vorobiev YV, Perez-Robles F, Gonzalez-Hernandez J (1998) Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol–gel. J Chem Phys 109:7511–7514

    Article  Google Scholar 

  25. Aguiar H, Serra J, Gonzalez P, Leon B (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids 355:475–480

    Article  Google Scholar 

  26. Guo H, Yang X, Xiao T, Zhang W, Lou L, Mugnier J (2004) Structure and optical properties of sol–gel derived Gd2O3 waveguide films. Appl Surf Sci 230:215–221

    Article  Google Scholar 

  27. Guo H, Dong N, Yin M, Zhang W, Lou L, Xia S (2004) Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals. J Phys Chem B 108:19205–19209

    Article  Google Scholar 

  28. Brzezinski B, Olejnik J, Paszyc S (1990) Fourier transform infrared study on the identification of gossypol tautomers. J Mol Struct 239:23–31

    Article  Google Scholar 

  29. Mirghani MES, Che Man YB (2003) A new method for determining gossypol in cottonseed oil by FTIR spectroscopy. J Am Oil Chem Soc 80:625–628

    Article  Google Scholar 

  30. Brzezinski B, Marciniak B, Paszyc S, Zundel G (1992) The tautomerization of gossypol as a function of the presence of Ni2+, Cu2+ or Zn2+ cations. J Mol Struct 268:61–66

    Article  Google Scholar 

  31. Brzezinski B, Paszyc S, Zundel G (1991) The structure of Gossypol as a function of the presence of HAuCl, and of Be2+ ions. J Mol Struct 246:45–51

    Article  Google Scholar 

  32. Przybylski P, Bejcar G, Schilf W, Kamienski B, Brzezinski B (2007) 13C, 15N CP-MAS as well as FT-IR studies of gossypol derivatives with aromatic substituents in solid. J Mol Struct 826:150–155

    Article  Google Scholar 

  33. Ilkevycha NS, Schroeder G, Rybachenko VI, Chotiy KY, Makarova RA (2012) Vibrational spectra, structure and antioxidant activity of gossypol imine derivatives. Spectrochim Acta A 86:328–335

    Article  Google Scholar 

  34. Simon S, Ardelean I, Filip S, Bratu I, Cosma I (2000) Structure and magnetic properties of Bi2O3–GeO2–Gd2O3 glasses. Solid State Commun 116:83–86

    Article  Google Scholar 

  35. Kliava J, Edelman IS, Potseluyko AM, Petrakovskaja EA, Berger R, Bruckental I, Yeshurun Y, Malakhovskii AV, Zarubina TV (2003) Magnetic and optical properties and electron paramagnetic resonance of gadolinium-containing oxide glasses. J Phys Condens Mat 15:6671–6681

    Article  Google Scholar 

  36. Sinko K (2010) Influence of chemical conditions on the nanoporous structure of silicate aerogels. Materials 3:704–740

    Article  Google Scholar 

  37. Botelho do Rego AM, Ferreira LFV (2001) Photonic and electronic spectroscopy for the characterization of organic surfaces and organic molecules adsorbed on surfaces. In: Nalwa HS (ed) Handbook of surfaces and interfaces of materials. Vol. 2: Surface and interface analysis and properties. Academic Press, New York

  38. Sprenger D, Bach H, Meisel W, Gutlich P (1990) XPS study of leached glass surfaces. J Non Cryst Solids 126:111–129

    Article  Google Scholar 

  39. Ponta O, Gruian C, Vanea E, Oprea B, Steinhoff H-J, Simon S (2013) Nanostructured biomaterials/biofluids interface processes: titanium effect on methaemoglobin adsorption on titanosilicate microspheres. J Mol Struct 1044:2–9

    Article  Google Scholar 

  40. Curran MD, Stiegman AE (1999) Morphology and pore structure of silica xerogels made at low pH. J Non Cryst Solids 249:62–68

    Article  Google Scholar 

  41. Dumas S, Jacques V, Sun WC, Troughton JS, Welch JT, Chasse JM, Schmitt-Willich H, Caravan P (2010) High relaxivity MRI contrast agents part 1: impact of single donor atom substitution on relaxivity of serum albumin-bound gadolinium complexes. Invest Radiol 45:600–612

    Article  Google Scholar 

  42. Jacques V, Dumas S, Sun WC, Troughton JS, Greenfield MT, Caravan P (2010) High relaxivity MRI contrast agents part 2: optimization of inner and second-sphere relaxivity. Invest Radiol 45:613–624

    Article  Google Scholar 

  43. Shao Y, Tian X, Hu W, Zhang Y, Liu H, He H, Shen Y, Xie F, Li L (2012) The properties of Gd2O3-assembled silica nanocomposite targeted nanoprobes and their application in MRI. Biomaterials 33:6438–6446

    Article  Google Scholar 

Download references

Acknowledgments

This work was possible with the financial support of the Sectoral Operational Program for Human Resources Development 2007–2013, co-financed by the European Social Fund, under POSDRU/159/1.5/S/132400 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraru, C.V., Vanea, E., Magyari, K. et al. Silica-gadolinium particles loaded with gossypol for simultaneous therapeutic effect and MRI contrast enhancement. J Sol-Gel Sci Technol 72, 593–601 (2014). https://doi.org/10.1007/s10971-014-3482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3482-6

Keywords

Navigation