Skip to main content

Advertisement

Log in

Rice husk ash nanosilica to inhibit human breast cancer cell line (3T3)

  • Brief Communcation:
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

NaOH treatment on phase, purity and particle size of rice husk nanosilica were investigated employing alkaline-extraction–acid-precipitation method. Mild reaction at lower NaOH (1.5 N) revealed small and fine particles (600 nm) due to moderate reaction rate. Morphology of human breast cancer cell line (3T3) revealed that suggestive cell distress effects were more pronounced at 500 µg/ml silica dosages which are in agreement with cell viability decrease (~50 %). Among different silica dosages, 10 µg/ml was found to have highest cell viability (∼70 ± 2 %) capable of increasing dissolved oxygen level while viability was almost decreased to 27 ± 5 % due to toxic effect caused at higher SiO2 dosage and could be a potential candidate best suited for biomedical applications through development of sustainable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Teng SH, Wang P, Dong JQ (2014) Bioactive hybrid coatings of poly(ε-caprolactone)-silica xerogel on titanium for biomedical applications. Mater Lett 129:209–212

    Article  Google Scholar 

  2. Yuvakkumar R, Elango V, Rajendran V, Kannan N (2014) High-purity nano silica powder from rice husk using a simple chemical method. J Exp Nanosci 9:272–281

    Article  Google Scholar 

  3. Saravanan K, Yuvakkumar R, Rajendran V, Paramasivam P (2012) Influence of sintering temperature and pH on the phase transformation, particle size and anti-reflective properties of RHA nano silica powders. Phase Transit 85:1109–1124

    Article  Google Scholar 

  4. Venkateshewaran S, Yuvakkumar R, Rajendran V (2013) Nano silicon from nano silica using natural resource (RHA) for solar cell fabrication. Phosphorus Sulfur Silicon Relat Elem 188:1178–1193

    Article  Google Scholar 

  5. Zulkifli NSC, Rahman IA, Mohamad D, Husein A (2013) A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram Int 39:4559–4567

    Article  Google Scholar 

  6. Dey KP, Ghosh S, Naskar MK (2012) A facile synthesis of ZSM-11 zeolite particles using rice husk ash as silica source. Mater Lett 87:87–89

    Article  Google Scholar 

  7. Li D, Zhu X (2011) Short-period synthesis of high specific surface area silica from rice husk char. Mater Lett 65:1528–1530

    Article  Google Scholar 

  8. Hernandez MS, Hernandez CS, Fuentes AG, Elorza E, Carrera-Rodrıguez M, Alquiza MJP (2014) Silica from rice husks employed as drug delivery for folic acid. J Sol-Gel Sci Technol. doi:10.1007/s10971-014-3378-5

    Google Scholar 

  9. Hassan AF, Abdelghny AM, Elhadidy H, Youssef AM (2014) Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol–gel method. J Sol-Gel Sci Technol 69:465–472

    Article  Google Scholar 

  10. Nandy S, Kundu D, Naskar MK (2014) Synthesis of mesoporous Stober silica nanoparticles: the effect of secondary and tertiary alkanolamines. J Sol-Gel Sci Technol. doi:10.1007/s10971-014-3420-7

    Google Scholar 

  11. Sani S, Muhid MNM, Hamdan H (2011) Design, synthesis and activity study of tyrosinase encapsulated silica aerogel (TESA) biosensor for phenol removal in aqueous solution. J Sol-Gel Sci Technol 59:7–18

    Article  Google Scholar 

  12. Witoon T, Chareonpanich M, Limtrakul J (2010) Size control of nanostructured silica using chitosan template and fractal geometry: effect of chitosan/silica ratio and aging temperature. J Sol-Gel Sci Technol 56:270–277

    Article  Google Scholar 

  13. Adam F, Chew T-S, Andas J (2011) A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass. J Sol-Gel Sci Technol 59:580–583

    Article  Google Scholar 

  14. Jesionowski T, Klapiszewski L, Milczarek G (2014) Kraft lignin and silica as precursors of advanced composite materials and electroactive blends. J Mater Sci 49:1376–1385

    Article  Google Scholar 

  15. Pires J, Fernandes AC, Avo R (2014) Bio-inspired synthesis of mesoporous sílicas using large molecular weight poly-l-lysine at neutral pH. J Mater Sci 49:6087–6092

    Article  Google Scholar 

  16. Zhao Y, Zhu Y (2014) Synergistic cytotoxicity of low-energy ultrasound and innovative mesoporous silica-based sensitive nanoagents. J Mater Sci 49:3665–3673

    Article  Google Scholar 

  17. Mannberg P, Nystrom B, Joffe R (2014) Service life assessment and moisture influence on bio-based thermosetting resins. J Mater Sci 49:3687–3693

    Article  Google Scholar 

  18. Hartono SB, Phuoc NT, Yu M, Jia Z, Monteiro MJ, Qiao S, Yu C (2014) Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery. J Mater Chem B 2:718–726

    Article  Google Scholar 

  19. Lee S, Chon H, Lee J, Ko J, Chung BH, Lim DW, Choo J (2014) Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. J Biosens Bioelectron 51:238–243

    Article  Google Scholar 

  20. Li J, An YL, Zang FC, Zong SF, Cui YP, Teng GJ (2013) A dual mode targeting probe for distinguishing HER2-positive breast cancer cells using silica-coated fluorescent magnetic nanoparticles. J Nanopart Res 15:1980–1989

    Article  Google Scholar 

  21. Balakrishnan V, Ab Wab HA, Razak KA, Shamsuddin S (2013) In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J Nanomater 2013:729306–729313

    Article  Google Scholar 

  22. Zhang L, Wang Y, Tang Y, Jiao Z, Xie C, Zhang H, Gu P, Wei X, Yang GY, Gu H, Zhang C (2013) High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model. Nanoscale 5:4506–4516

    Article  Google Scholar 

  23. Yuvakkumar R, Elango V, Rajendran V, Kannan N, Prabu P (2011) A new approach to preparing crystalline nano molybdenum particles. Synth React Inorg Met-Org Chem 41:309–314

Download references

Acknowledgments

This work was supported by Chungnam National University Research Fund (2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Rajendran or S. I. Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvakkumar, R., Nathanael, A.J., Rajendran, V. et al. Rice husk ash nanosilica to inhibit human breast cancer cell line (3T3). J Sol-Gel Sci Technol 72, 198–205 (2014). https://doi.org/10.1007/s10971-014-3455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3455-9

Keywords

Navigation