Journal of Sol-Gel Science and Technology

, Volume 71, Issue 3, pp 606–610 | Cite as

Nonhydrolytic sol–gel and gram-scale synthesis of surfactant-free maghemite nanoparticles with high surface area

  • D. R. Bae
  • Y.-J. Lee
  • D. K. Kim
  • S. W. Lee
  • K. S. Chang
  • G.-R. Yi
  • G. Lee
Brief Communication


An organic molecule was used as a surfactant for nanoparticle synthesis in liquid phase. However, residual molecules on the surface of the nanoparticles limit their catalytic applications, because the interaction of a reactant with the nanoparticle surface is interrupted. Therefore, it is favorable for catalytic applications that the organic molecule used in the synthesis of nanoparticles only induces a sol–gel reaction of the metal precursors and the formation of nanoparticles and hardly adheres to the resulting nanoparticles. Herein, we report surfactant-free and high-surface area maghemite nanostructures via nonhydrolytic sol–gel reaction. Using Fe(acetylacetonate)3 as an iron precursor and hexylamine as a solvent and growth inhibitor, Fe2O3 nanoparticles were generated by nonhydrolysis of the iron complex and condensation at 140 °C under an air atmosphere. Characterization revealed monodisperse nanoparticles with an average size of 2.3 nm and a crystalline phase of maghemite. Residual hexylamine is hardly observed, and thus their specific surface area is 403.7 m2/g. An experimental comparison of the Fe2O3 synthesis with hexylamine and benzylamine indicates that the cone angle of an organic molecule is an important factor in the synthesis of nanoparticles with a small size and high surface area.


Nonhydrolytic reaction Surfactant-free High surface area Cone angle 



This work was supported by the Korea Basic Science Institute (KBSI) Grant (D34500), Korea NRF grant (2010-0029409) and Human Resources Development Program (No.20124010203270) of KETEP funded by the Korean Government Ministry of Knowledge Economy.


  1. 1.
    Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893CrossRefGoogle Scholar
  2. 2.
    Park J, Lee E, Hwang N-M, Kang M, Kim SC, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hyeon T (2005) Angew Chem Int Ed 44:2872CrossRefGoogle Scholar
  3. 3.
    Shen C, Hui C, Yang T, Xiao C, Tian T, Bao L, Chen S, Ding H, Gao H (2008) Chem Mater 20:6939CrossRefGoogle Scholar
  4. 4.
    Liu Y, Walker ARH (2010) Angew Chem Int Ed 122:6933CrossRefGoogle Scholar
  5. 5.
    Zhou X, Xie ZX, Jiang ZY, Kuang Q, Zhang SH, Xu T, Huang RB, Zheng LS (2005) Chem Comm 5572 Google Scholar
  6. 6.
    Wang H, Uehara M, Nakamura H, Miyazaki M, Maeda H (2005) Adv Mater 17:2506CrossRefGoogle Scholar
  7. 7.
    Buonsanti R, Grillo V, Carlino E, Giannini C, Kipp T, Cingolani R, Cozzoli PDJ (2008) J Am Chem Soc 130:11223CrossRefGoogle Scholar
  8. 8.
    Wang C, Hu Y, Lieber CM, Sun S (2008) J Am Chem Soc 130:8902CrossRefGoogle Scholar
  9. 9.
    Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891CrossRefGoogle Scholar
  10. 10.
    Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, Mcconnell MV, Nishimura DG, Dai H (2006) Nat Mater 5:971CrossRefGoogle Scholar
  11. 11.
    Park MH, Li JH, Kumar A, Li G, Yang Y (2009) Adv Funct Mater 19:1241CrossRefGoogle Scholar
  12. 12.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425CrossRefGoogle Scholar
  13. 13.
    Park JC, Kim J, Kwon H, Song H (2009) Adv Mater 21:803CrossRefGoogle Scholar
  14. 14.
    Lee G, Shim JH, Kang H, Nam KM, Song H, Park JT (2009) Chem Comm 5036Google Scholar
  15. 15.
    Garnweitner G, Niederberger M (2006) J Am Ceram Soc 6:1801CrossRefGoogle Scholar
  16. 16.
    Pinna N, Garnweitner G, Antonietti M, Niederberger M (2005) J Am Chem Soc 127:5608CrossRefGoogle Scholar
  17. 17.
    Kang HW, Lee SC, Kweon K, Kim HJ, Lee G (2010) J Anal Sci Technol 1:130CrossRefGoogle Scholar
  18. 18.
    Martin RL, Shirley DA (1974) J Am Chem Soc 96:5299CrossRefGoogle Scholar
  19. 19.
    Garnweitner G, Antonietti M, Niederberger M (2005) Chem Comm 397Google Scholar
  20. 20.
    Zhao ZW, Guo ZP, Liu HK (2005) J Power Sources 147:264CrossRefGoogle Scholar
  21. 21.
    Melcarne G, Marco LD, Carlino E, Martina F, Manca M, Cingolani R, Gigli G, Ciccarella G (2010) J Mater Chem 20:7248CrossRefGoogle Scholar
  22. 22.
    Rao Y, Trudeau M, Antonelli D (2006) J Am Chem Soc 128:13996CrossRefGoogle Scholar
  23. 23.
    Asadi M, Kianfar AH, Torabi S, Mohammadi K (2008) J Chem Thermodyn 40:523CrossRefGoogle Scholar
  24. 24.
    Romeo R, Arena G, Scoiaro LM (1992) Inorg Chem 31:4879CrossRefGoogle Scholar
  25. 25.
    Eckhardt B, Ortel E, Polte J, Bernsmeier D, Görke O, Strasser P, Kraehnert R (2012) Adv Mater 24:3115CrossRefGoogle Scholar
  26. 26.
    Schüth F (2003) Angew Chem Int Ed 42:3604CrossRefGoogle Scholar
  27. 27.
    Chen D, Huang F, Cheng Y-B, Caruso RA (2009) Adv Mater 21:2206CrossRefGoogle Scholar
  28. 28.
    Terribile D, Trovarelli A, Llorca J, Leitenburg CD, Dolcetti G (1998) J Catal 178:299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Korea Basic Science InstituteDaejeonRepublic of Korea
  2. 2.Center for Research FacilitiesChungnam National UniversityDaejeonRepublic of Korea
  3. 3.School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations