Skip to main content
Log in

Rhodamine B nanocrystals: elaborations, characterizations and functionalizations for biosensing applications

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A biological sensor based on fluorescent organic nanocrystals (NCs) of Rhodamine B grown in sol–gel thin films was developed. The original signalization function is based on fluorescence contrasts of NCs, which exhibit a simple fluorescence signature, good photostability and higher fluorescence intensities compared to dispersed dye molecules. Thanks to a well-controlled dissolution process of the sol–gel surface, accurately followed by atomic force microscopy, the NCs were made emerging just a few nanometers above the silicate thin films to be directly accessible to biological macromolecules. Thus, hairpin-shaped DNA, functionalized by a probe-molecule (DNA probe), has been grafted onto nanocrystal surfaces leading to a fluorescence quenching by Forster resonance energy transfer. After hybridization of these hairpin-shaped DNA probes with their complementary DNA-target, the molecular probes and NCs are pulled apart, stopping thus the quenching. This “turn-on” of nanocrystal fluorescence allows thus a label-free DNA detection. The preparation methodology of the signalization function, its functionalization by hairpin-shaped DNA probes and first DNA-sensor experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cosnier S, Mailley P (2008) Recent advances in DNA sensors. Analyst 133(8):984–991. doi:10.1039/b803083a

    Article  Google Scholar 

  2. Epstein JR, Biran I, Walt DR (2002) Fluorescence-based nucleic acid detection and microarrays. Anal Chim Acta 469(1):3–36. doi:10.1016/S0003-2670(02)00030-2

    Article  Google Scholar 

  3. Launer HF (1968) Photobleaching-a common phenomenon. Nature 218(5137):160–161

    Article  Google Scholar 

  4. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19(4):365–370. doi:10.1038/86762

    Article  Google Scholar 

  5. Dubuisson E, Szunerits S, Bacia M, Pansu R, Ibanez A (2011) Fluorescent molecular nanocrystals anchored in sol–gel thin films: a label-free signalization function for biosensing applications. New J Chem 35(11):2416–2421. doi:10.1039/c1nj20353c

    Article  Google Scholar 

  6. Dubuisson E, Monnier V, Sanz-Menez N, Boury B, Usson Y, Pansu RB, Ibanez A (2009) Brilliant molecular nanocrystals emerging from sol–gel thin films: towards a new generation of fluorescent biochips. Nanotechnology 20(31):315301

    Article  Google Scholar 

  7. Monnier V, Sanz N, Botzung-Appert E, Bacia M, Ibanez A (2006) Confined nucleation and growth of organic nanocrystals in sol–gel matrices. J Mater Chem 16(15):1401–1409. doi:10.1039/b509833p

    Article  Google Scholar 

  8. Lavalley V, Chaudouët P, Stambouli V (2007) An atomic force microscopy study of DNA hairpin probes monolabelled with gold nanoparticle: grafting and hybridization on oxide thin films. Surf Sci 601(23):5424–5432. doi:10.1016/j.susc.2007.09.015

    Article  Google Scholar 

  9. Sanz N, Gaillot A-C, Usson Y, Baldeck PL, Ibanez A (2000) Organic nanocrystals grown in sol–gel coatings. J Mater Chem 10(12):2723–2726. doi:10.1039/b004989l

    Article  Google Scholar 

  10. Sanz N, Zaccaro J, Delmotte L, Le Luyer C, Ibanez A (2002) Preparation and characterization of N-4-nitrophenyl-L-prolinol nanocrystals in sol–gel matrices. J Solid State Chem 165(1):25–34. doi:10.1006/jssc.2001.9485

    Article  Google Scholar 

  11. Monnier V, Dubuisson E, Sanz-Menez N, Boury B, Rouessac V, Ayral A, Pansu RB, Ibanez A (2010) Selective chemical sensors based on fluorescent organic nanocrystals confined in sol–gel coatings of controlled porosity. Microporous Mesoporous Mater 132(3):531–537. doi:10.1016/j.micromeso.2010.04.004

    Article  Google Scholar 

  12. Boury B, Corriu RJP (2002) Auto-organisation of hybrid organic–inorganic materials prepared by sol–gel chemistry. Chem Commun 8:795–802. doi:10.1039/b109040m

    Article  Google Scholar 

  13. Dubuisson E, Pansu R, Ibanez A (2011) Fluorescent nanocrystals grown in sol–gel thin films for generic stable and sensitive sensors. J Solgel Sci Technol 57(3):258–262. doi:10.1007/s10971-010-2176-y

    Article  Google Scholar 

  14. Monnier V, Sanz N, Pansu RB, Ibanez A. WO 2008/145875

  15. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  16. Gratz AJ, Bird P, Quiro GB (1990) Dissolution of quartz in aqueous basic solution, 106–236 °C: surface kinetics of “perfect” crystallographic faces. Geochim Cosmochim Acta 54(11):2911–2922. doi:10.1016/0016-7037(90)90109-X

    Article  Google Scholar 

  17. Claessens HA, van Straten MA (2004) Review on the chemical and thermal stability of stationary phases for reversed-phase liquid chromatography. J Chromatogr A 1060(1–2):23–41. doi:10.1016/j.chroma.2004.08.098

    Article  Google Scholar 

  18. Leboda R, Mendyk E, Tertykh VA (1996) Effect of medium pH on hydrothermal treatment of silica gels (xerogels) in an autoclave. Mater Chem Phys 43(1):53–58. doi:10.1016/0254-0584(95)01604-S

    Article  Google Scholar 

  19. Powell RC, Soos ZG (1975) Singlet exciton energy transfer in organic solids. J Lumin 11(1–2):1–45. doi:10.1016/0022-2313(75)90077-0

    Article  Google Scholar 

  20. Tenery D, Gesquiere AJ (2009) Effect of PCBM concentration on photoluminescence properties of composite MEH-PPV/PCBM nanoparticles investigated by a Franck–Condon analysis of single-particle emission spectra. ChemPhysChem 10(14):2449–2457. doi:10.1002/cphc.200900413

    Article  Google Scholar 

  21. Sam S, Touahir L, Salvador Andresa J, Allongue P, Chazalviel JN, Gouget-Laemmel AC, Henry de Villeneuve C, Moraillon A, Ozanam F, Gabouze N, Djebbar S (2009) Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir 26(2):809–814. doi:10.1021/la902220a

    Article  Google Scholar 

  22. Updegrove TB, Correia JJ, Chen Y, Terry C, Wartell RM (2011) The stoichiometry of the Escherichia coli Hfq protein bound to RNA. RNA 17(3):489–500. doi:10.1261/rna.2452111

    Article  Google Scholar 

  23. Naue N, Fedorov R, Pich A, Manstein DJ, Curth U (2011) Site-directed mutagenesis of the χ subunit of DNA polymerase III and single-stranded DNA-binding protein of E. coli reveals key residues for their interaction. Nucleic Acids Res 39(4):1398–1407. doi:10.1093/nar/gkq988

    Article  Google Scholar 

  24. Yamasaki R, Kim J, Jung H, Lee H, Kawai T (2006) Dependence upon ionic strength in the immobilization of probing oligonucleotides onto streptavidin-modified probe surfaces. Biochem Eng J 29(1–2):125–128. doi:10.1016/j.bej.2005.03.015

    Article  Google Scholar 

  25. Jain A, Liu R, Xiang YK, Ha T (2012) Single-molecule pull-down for studying protein interactions. Nat Protoc 7(3):445-452. http://www.nature.com/nprot/journal/v7/n3/abs/nprot.2011.452.html#supplementary-information

  26. Zhou D, Li Y, Hall EAH, Abell C, Klenerman D (2011) A chelating dendritic ligand capped quantum dot: preparation, surface passivation, bioconjugation and specific DNA detection. Nanoscale 3(1):201–211. doi:10.1039/c0nr00462f

    Article  Google Scholar 

  27. Vasdekis AE, Laporte GPJ (2011) Enhancing single molecule imaging in optofluidics and microfluidics. Int J Mol Sci 12(8):5135–5156

    Article  Google Scholar 

  28. Lemaistre JP (2005) Disorder, intraband relaxation and dephasing of Frenkel excitons in molecular aggregates. J Lumin 112(1–4):407–410. doi:10.1016/j.jlumin.2004.09.036

    Article  Google Scholar 

  29. Fadeev AY, McCarthy TJ (1999) Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir 15(11):3759–3766. doi:10.1021/la981486o

    Article  Google Scholar 

  30. Sagiv J (1980) Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc 102(1):92–98. doi:10.1021/ja00521a016

    Article  Google Scholar 

Download references

Acknowledgments

The French National Research Agency (ANR Brio+) and CNRS are gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Ibanez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubuisson, E., Marty, L., Cattoën, X. et al. Rhodamine B nanocrystals: elaborations, characterizations and functionalizations for biosensing applications. J Sol-Gel Sci Technol 72, 179–188 (2014). https://doi.org/10.1007/s10971-014-3431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3431-4

Keywords

Navigation