Skip to main content

Advertisement

Log in

Sol–gel synthesis of calcium hydroxyapatite thin films on quartz substrate using dip-coating and spin-coating techniques

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel synthesis route was suggested to prepare calcium hydroxyapatite (Ca10(PO4)6(OH)2, CHA) thin films on quartz substrates. CHA thin films were obtained using dip-coating and spin-coating techniques by coating the substrates 1, 5, 15 and 30 times. In the sol–gel process, the ethylenediaminetetraacetic acid and 1,2-ethandiol as complexing agents were used. Moreover, triethanolamine and polyvinyl alcohol were used as gel network forming materials. After each coating procedure the films were annealed at 1,000 °C. The results obtained from dip-coating and spin-coating techniques were compared in this study. It was demonstrated, that the formation of calcium hydroxyapatite depends on dipping (or spinning) time and annealing duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bosco R, Edreira ERU, Wolke JGC, Leeuwenburgh SCG, van den Beucken JJJP, Jansen JA (2013) Instructive coatings for biological guidance of bone implants. Surf Coat Technol 233:91–98

    Article  Google Scholar 

  2. You C, Yeo IS, Kim MD, Eom TK, Lee JY, Kim S (2005) Characterization and in vivo evaluation of calcium phosphate coated cp-titanium by dip-spin method. Curr Appl Phys 5:501–506

    Article  Google Scholar 

  3. Hsieh MF, Perng LH, Chin TS (2002) Hydroxyapatite coating on Ti6Al4V alloy using a sol–gel derived precursor. Mater Chem Phys 74:245–250

    Article  Google Scholar 

  4. Hwang K, Song J, Kang B, Park Y (2000) Sol–gel derived hydroxyapatite films on alumina substrates. Surf Coat Technol 123:252–255

    Article  Google Scholar 

  5. Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    Article  Google Scholar 

  6. Balamurugan A, Kannan S, Rajeswari S (2002) Bioactive Sol–gel hydroxyapatite surface for biomedical applications—in vitro study. Trends Biomater Artif Organs 16:18–20

    Google Scholar 

  7. Le HR, Chen KY, Wang CA (2012) Effect of pH and temperature on the morphology and phases of co-precipitated hydroxyapatite. J Solgel Sci Technol 61:592–599

    Article  Google Scholar 

  8. Epiphanova A, Magaev O, Vodyankina O (2012) Formation and characterization of phosphate-modified silicate materials derived from sol–gel process. J Solgel Sci Technol 61:509–517

    Article  Google Scholar 

  9. Montenero A, Gnappi G, Ferrari F, Cesari M (2000) Sol–gel derived hydroxyapatite coatings on titanium substrate. Mater Sci 35:2791–2797

    Article  Google Scholar 

  10. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781

    Article  Google Scholar 

  11. Kim HW, Koh YH, Li LH, Lee S, Kim HE (2004) Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomater 25:2533–2538

    Article  Google Scholar 

  12. Ramanan SR, Venkatesh R (2002) Study of preparation and characterization of hydroxyapatite coatings by sol–gel technique. Sci Technol Develop 19:55–62

    Google Scholar 

  13. Chai CS, Ben-Nissan B (1999) Bioactive nanocrystalline sol–gel hydroxyapatite coatings. Mater Med 10:465–469

    Article  Google Scholar 

  14. Vila M, Izguierdo-Barba I, Bourgeois A, Vallet-Regi M (2011) Bimodal meso/macro porous hydroxyapatite coatings. J Solgel Sci Technol 57:109–113

    Article  Google Scholar 

  15. Liu DM, Yang Q, Troczynski T (2002) Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 23:691–698

    Article  Google Scholar 

  16. Haddow DB, James PF (1998) Sol–gel derived calcium phosphate coatings for biomedical applications. J Solgel Sci Technol 13:261–265

    Article  Google Scholar 

  17. Milella E, Cosentino F, Licciulli A, Massaro C (2001) Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol–gel process. Biomaterials 22:1425–1431

    Article  Google Scholar 

  18. Huang J, Best SM, Bonfield W, Buckland T (2010) Development and characterization of titanium-containing hydroxyapatite for medical applications. Acta Biomater 6:241–249

    Article  Google Scholar 

  19. Balamurugan A, Rebelo AHS, Lemos AF, Rocha JHG, Ventura JMG, Ferreira JMF (2008) Suitability evaluation of sol–gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent Mater 24:1374–1380

    Article  Google Scholar 

  20. Ballo AM, Xia W, Palmquist A, Lindahl C, Emanuelsson L, Lausmaa J, Engqvist H, Thomsen P (2012) Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants. J R Soc Interface 9:1615–1624

    Article  Google Scholar 

  21. Qi G, Zhang S, Khor KA, Weng W, Zeng X, Liu C (2008) An interfacial study of sol–gel-derived magnesium apatite coatings on Ti6Al4V substrates. Thin Solid Films 516:5172–5175

    Article  Google Scholar 

  22. Yang X, Yu S, Li W (2009) Preparation of bioceramic films containing hydroxyapatites on Ti–6Al–4V alloy surfaces by the micro-arc oxidation technique. Mater Res Bull 44:947–949

    Article  Google Scholar 

  23. Peon AE, Soares SM, Rodrigues JFA, Agata de Sena L, Galvan SJC, Almeida SGD (2007) Comparative study of hydroxyapatite coatings obtained by sol–gel and electrophoresis on titanium sheets. Revista Materia 12:156–163

    Article  Google Scholar 

  24. Mavis B, Cuneyt TA (2000) Dip coating of calcium hydroxyapatite on Ti–6Al–4V substrates. Am Ceram Soc 83:989–991

    Article  Google Scholar 

  25. Beganskiene A, Dudko O, Sirutkaitis R, Giraitis R (2003) Water based sol–gel synthesis of hydroxyapatite. Mater Sci (Medžiagotyra) 9:383–386

    Google Scholar 

  26. Beganskiene A, Stankeviciute Z, Malakauskaite M, Bogdanoviciene I, Mikli V, Tõnsuaadu K, Kareiva A (2013) Sol–gel approach to the calcium phosphate nanocomposites. Nanostruct Mater Nanotechnol 7:1–11

    Google Scholar 

  27. Stankeviciute Z, Malakauskaite M, Beganskiene A, Kareiva A (2013) Sol–gel synthesis of calcium phosphate coatings on Ti substrate using dip-coating technique. Chemija 24:288–295

    Google Scholar 

  28. Wang M, Lee KE, Hahn SH, Kim EJ, Kim S, Chung JS, Shin EW, Park C (2007) Optical and photoluminescent properties of sol–gel Al-doped ZnO thin films. Mater Lett 61:1118–1121

    Article  Google Scholar 

  29. Lee KE, Wang M, Kim EJ, Hahn SH (2009) Structural, electrical and optical properties of sol–gel AZO thin films. Curr Appl Phys 9:683–687

    Article  Google Scholar 

  30. Cuneyt Tas A (2001) Molten salt synthesis of calcium hydroxyapatite whiskers. Am Ceram Soc 84:295–300

    Google Scholar 

  31. Bogdanoviciene I, Tõnsuaadu K, Mikli V, Grigoraviciute-Puroniene I, Beganskiene A, Kareiva A (2010) pH impact on the sol–gel preparation of calcium hydroxyapatite, Ca10(PO4)6(OH)2, using a novel complexing agent DCTA. Cent Eur J Chem 8:1323–1330

    Article  Google Scholar 

  32. Bogdanoviciene I, Beganskiene A, Kareiva A, Juskenas R, Selskis A, Ramanauskas R, Tõnsuaadu K, Mikli V (2010) Influence of heating conditions on the formation of sol–gel derived calcium hydroxyapatite. Chemija 21:98–105

    Google Scholar 

  33. Zeng H, Lacefield WR (2000) XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the effects of various process parameters. Biomaterials 21:23–30

    Article  Google Scholar 

  34. Bosco R, Iafisco M, van den Beucken J, Leeuwenburgh S, Jansen J (2013) Adsorption of alendronate onto biomimetic apatite nanocrystals to develop drug carrier coating for bone implants. Bioceramics 24. Key Eng Mater 529–530:475–479

    Google Scholar 

  35. Lin KL, Zhai D, Zhang N, Kawazoe N, Chen GP, Chang J (2014) Fabrication and characterization of bioactive calcium silicate microspheres for drug delivery. Ceram Int 40:3287–3293

    Article  Google Scholar 

  36. Miao G, Chen X, Mao C, Li X, Li Y, Lin C (2014) Synthesis and characterization of europium-containing luminescent bioactive glasses and evaluation of in vitro bioactivity and cytotoxicity. J Solgel Sci Technol 69:250–259

    Article  Google Scholar 

  37. Shang L, Nienhaus GU (2013) Small fluorescent nanoparticles at the nano-bio interface. Mater Today 16:58–66

Download references

Acknowledgments

This research was funded by COST Action MP1202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aivaras Kareiva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakauskaite-Petruleviciene, M., Stankeviciute, Z., Beganskiene, A. et al. Sol–gel synthesis of calcium hydroxyapatite thin films on quartz substrate using dip-coating and spin-coating techniques. J Sol-Gel Sci Technol 71, 437–446 (2014). https://doi.org/10.1007/s10971-014-3394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3394-5

Keywords

Navigation