Skip to main content
Log in

Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work reports the study the structure, optical and magnetic properties of LaFeO3 nanoparticles synthesized by the polymerized complex method. The LaFeO3 nanoparticles were successfully obtained from calcination of the precursor at different temperatures from 750 to 1,050 °C in air for 2 h. The calcined LaFeO3 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Visible spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy (XANES) and vibrating sample magnetometry. The XRD and TEM results showed that all LaFeO3 samples had a single phase nature with the orthorhombic structure. The estimated crystallite sizes were in the range of 44.5 ± 2.4–74.1 ± 4.9 nm. UV–Vis spectra showed strong UV and Vis absorption with small band gap energy. The valence states of Fe ions were in the Fe3+ and Fe4+ state, as confirmed by XPS and XANES results. The weak ferromagnetic behavior with specific saturation magnetization of 0.1 emu/g at 10 kOe was obtained for the small particle of 44.5 ± 2.4 nm. The uncompensated spins at the surface was proposed as playing a part in the magnetic properties of small sized LaFeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tugova EA, Popova VF, Zvereva IA, Gusarov VV (2006) Phase diagram of the LaFeO3–LaSrFeO4 system. Glass Phys Chem 32:674–676

    Article  Google Scholar 

  2. Petrovic S, Terlecki A, Karanovic L, Kirilov-Stefanov P, Zduji M, Dondur V, Paneva D, Mitov I, Rakic V (2008) LaMO3 (M = Mg, Ti, Fe) perovskite type oxides: preparation, characterization and catalytic properties in methane deep oxidation. Appl Catal B Environ 79:186–198

    Article  Google Scholar 

  3. Tijare SN, Joshi MV, Padole PS, Mangrulkar PA, Rayalu S, Labhsetwar NK (2012) Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int J Hydrogen Energy 37:10451–10456

    Article  Google Scholar 

  4. Wei Z, Xu Y, Liu H, Hu C (2009) Preparation and catalytic activities of LaFeO3 and Fe2O3 for HMX thermal decomposition. J Hazard Mater 165:1056–1061

    Article  Google Scholar 

  5. Faye J, Bayleta A, Trentesauxb M, Royera S, Dumeignil F, Duprez D, Valange S (2012) Influence of lanthanum stoichiometry in La1−xFeO3−δ perovskites on their structure and catalytic performance in CH4 total oxidation. J Appl Catal B 126:134–143

    Article  Google Scholar 

  6. Bellakki MB, Kelly B, Manivannan V (2010) Synthesis and characterization and property studies of (LaAg)FeO3 perovskite materials. J Alloys Compd 489:64–71

    Article  Google Scholar 

  7. Andoulsin R, Horchani-Naifer K, Fe´rid M (2013) Electrical conductivity of La1−xCaxFeO3−δ solid solutions. Ceram Int 39:6527–6531

    Article  Google Scholar 

  8. Karpinsky DV, Troyanchuk IO, Sikolenko V, Efimov V, Kholkin AL (2013) Electromechanical and magnetic properties of BiFeO3–LaFeO3–CaTiO3 ceramics near the rhombohedral-orthorhombic phase boundary. J Appl Phys 113:187218

    Article  Google Scholar 

  9. Rajendran M, Bhattacharya AK (2006) Nanocrystalline orthoferrite powders: synthesis and magnetic properties. J Eur Ceramic Soc 26:3675–3679

    Article  Google Scholar 

  10. Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393

    Article  Google Scholar 

  11. Winkler E, Zysler RD, Mansilla MV, Fiorani D (2005) Surface anisotropy effects in NiO nanoparticles. Phys Rev B 72:132409

    Article  Google Scholar 

  12. Kodama RH, Berkowitz AE (1999) Atomic-scale magnetic modeling of oxide nanoparticles. Phys Rev B 59:6321

    Article  Google Scholar 

  13. Rajagukguk R, Shin DG, Lee BW (2011) Magnetic ordering in (1−x)BaTiO3–xLaFeO3 solid solutions. J Magnetics 16(2):101–103

    Article  Google Scholar 

  14. Liu T, Xu Y (2011) Synthesis of nanocrystalline LaFeO3 powders via glucose sol–gel route. Mater Chem Phys 129:1047–1050

    Article  Google Scholar 

  15. Parida KM, Reddy KH, Martha S, Das DP, Biswal N (2010) Fabrication of anocrystalline LaFeO3: an efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int J Hydrogen Energy 35:12161–12168

    Article  Google Scholar 

  16. Saad AA, Khan W, Dhiman P, Naqvi AH, Singh M (2013) Structural, Optical and magnetic properties of perovskite (La1−xSrx)(Fe1−xNix)O3, (x = 0, 0.1, 0.2) nanoparticles. Electron Mater Lett 9:77–81

    Article  Google Scholar 

  17. Kumar M, Srikanth S, Ravikumar B, Alex TC, Das SK (2009) Synthesis of pure and Sr-doped LaGaO3, LaFeO3 and LaCoO3 and Sr, Mg-doped LaGaO3 for ITSOFC application using different wet chemical routes. Mater Chem Phys 113:803–815

    Article  Google Scholar 

  18. Thuy NT, Minh DL (2012) Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Adv Mater Sci Eng 1155:380306

    Google Scholar 

  19. Sivakumar M, Gedanken A, Zhong W, Jiang YH, Du YW, Brukental I, Bhattacharya D, Yeshurun Y, Nowik I (2004) Sonochemical synthesis of nanocrystalline LaFeO3. J Mater Chem 14:764–769

    Article  Google Scholar 

  20. Zheng WJ, Liu RH, Peng DK, Meng GY (2000) Hydrothermal synthesis of LaFeO3 under carbonate-containing medium. Mater Lett 43:19–22

    Article  Google Scholar 

  21. Kakihana M (1996) “Sol–Gel” preparation of high temperature superconducting oxides. J Sol-Gel Sci Technol 6:7–55

    Article  Google Scholar 

  22. Popa M, Frantti J, Kakihana M (2002) Lanthanum ferrite LaFeO3+d nanopowders obtained by the polymerizable complex method. Solid State Ionics 154–155:437–445

    Article  Google Scholar 

  23. Popa M, Frantti J, Kakihana M (2002) Characterization of LaMeO3 (Me: Mn Co, Fe) perovskite powders obtained by polymerizable complex method. Solid State Ionics 154–155:135–141

    Article  Google Scholar 

  24. Kaiwen Z, Xuehang W, Wenwei W, Jun X, Siqi T, Sen L (2013) Nonacrystalline LaFeO3 preparation and thermal process of precursor. Adv Powder Technol 24:359–363

    Article  Google Scholar 

  25. Ziegler E, Heinrich A, Oppermann H, Stover G (1981) Electrical properties and non-stoichiometry in ZnO single crystals. Phys Status Solidi A 66:635–648

    Article  Google Scholar 

  26. Yang Z, Huang Z, Ye L, Xie X (1999) Influence of parameters U and J in the LSDA+U method on electronic structure of the perovskites LaMO3 (M = Cr, Mn, Fe Co, Ni). Phys Rev B 60:15674–15682

    Article  Google Scholar 

  27. Koferstein R, Jager L, Ebbinghaus SG (2013) Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics. Solid State Ionics 249–250:1–5

    Article  Google Scholar 

  28. Tang PS, Fu MB, Chen HF, Cao F (2011) Synthesis of nanocrystalline LaFeO3 by precipitation and its visible-light photocatalytic activity. Mater Sci Forum 694:150–154

    Article  Google Scholar 

  29. Song P, Quin H, Zhang L, An K, Lin Z, Hu J, Jiang M (2005) The structure, electrical and ethanol-sensing properties of La1−xPbxFeO3 perovskite ceramics with x ≤ 0.3. Sensors Actuat B Chem 104:312–316

    Article  Google Scholar 

  30. Bidrawn F, Lee S, Vohs JM, Gorte RJ (2008) The effect of Ca, Sr, and Ba doping on the ionic conductivity and cathode performance of LaFeO3. J Electrochem Soc 155:B660–B665

    Article  Google Scholar 

  31. Thirumalairajan S, Girija K, Ganesh V, Mangalaraj D, Viswanathan C, Ponpandian N (2013) Novel synthesis of LaFeO3 nanosructure dendrites: a systematic investigation of growth mechanism, properties, and biosensing for highly selective determination of neurotransmitter compounds. Cryst Growth Des 13:291–302

    Article  Google Scholar 

  32. Wei ZX, Wang Y, Liu JP, Xiao CM, Zeng WW, Ye SB (2013) Synthesis, magnetization, and photocatalytic activity of LaFeO3 and LaFe0.9Mn0.1O3−δ. J Mater Sci 48:1117–1126

    Article  Google Scholar 

  33. Mazumder R, Ghosh S, Mondal P, Bhattacharya D, Dasgupta S, Das N, Sen A, Tyagi AK, Sivakumar M, Takami T, Ikuta H (2006) Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3. J Appl Phys 100:033908

    Article  Google Scholar 

  34. Gao F, Yuan Y, Wang KF, Chen XY, Chen F, Liu JM, Ren ZF (2006) Preparation and photoabsorption characterization of BiFeO3 nanowires. Appl Phys Lett 89:102506

    Article  Google Scholar 

  35. Maiti R, Basu S, Chakravorty D (2009) Synthesis of nanocrystalline YFeO3 and its magnetic properties. J Magn Magn Mater 321:3274–3277

    Article  Google Scholar 

  36. Phokha S, Pinitsoontorn S, Maensiri S (2012) Structure and magnetic properties of monodisperse Fe3+-doped CeO2 nanospheres. Nano-Micro Lett 5(4):223–233

    Google Scholar 

  37. Lee WY, Yun HJ, Yoon JW (2014) Characterization and magnetic properties of LaFeO3 nanofibers synthesized by electrospining. J Alloy Compd 583:320–324

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand for XANES facilities, and the Department of Physics, Khon Kaen University for providing VSM facilities. This work is supported by Suranaree University of Technology (SUT) and by the Office of the Higher Education Commission under NRU project of Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumalin Phokha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phokha, S., Pinitsoontorn, S., Maensiri, S. et al. Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J Sol-Gel Sci Technol 71, 333–341 (2014). https://doi.org/10.1007/s10971-014-3383-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3383-8

Keywords

Navigation