Skip to main content
Log in

Sol–gel derived near-UV and visible antireflection coatings from hybridized hollow silica nanospheres

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper reports a facile means to gradually tailor refractive index from an ultra-low-n of 1.10–1.45 based on hollow silica nanospheres hybridized with acid-catalyzed silica. The influences of the hybridization on refractive index, thin-film uniformity, and roughness were systematically investigated. The single-layered antireflection (AR) coatings and the three-layered AR coatings were prepared using the hybridized thin films as building blocks. The former showed the near-perfect transmittance and reflectance, 99.16 and 0.42 %, respectively, at a single wavelength of 600 nm, while the average transmittance (T ave) and reflectance (R ave) from the near ultraviolet (UV) to the visible region (300–800 nm) were moderate; the latter demonstrated an excellent AR capability in broadband that T ave reaches 97.29 %, much higher than that of the single-layered AR coating, 95.86 %. More interestingly, the three-layered AR coating showed an average transmittance of 97.94 % in the near-UV wavelength range from 345 to 400 nm and it was 6.77 % higher than that of bare glass. Moreover, the three-layered AR coatings had the less degradation in transmission and surface morphology after the highly-accelerated temperature and humidity stress tests, and the wet abrasion scrub tests. The findings imply that both good optical performance and durability are likely to be achieved using the sol–gel derived multilayered AR coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thelen A (1989) Design of optical interference coatings, vol 91. McGraw-Hill, New York

    Google Scholar 

  2. Yoldas BE (1980) Investigations of porous oxides as an antireflective coating for glass surfaces. Appl Opt 19(9):1425–1429

    Article  Google Scholar 

  3. Cathro K, Constable D, Solaga T (1984) Silica low-reflection coatings for collector covers, by a dip-coating process. Sol Energy 32(5):573–579

    Google Scholar 

  4. Thomas IM (1986) High laser damage threshold porous silica antireflective coating. Appl Opt 25(9):1481–1483

    Article  Google Scholar 

  5. Southwell WH (1983) Gradient-index antireflection coatings. Opt Lett 8(11):584–586

    Article  Google Scholar 

  6. Dobrowolski J, Poitras D, Ma P, Vakil H, Acree M (2002) Toward perfect antireflection coatings: numerical investigation. Appl Opt 41(16):3075–3083

    Article  Google Scholar 

  7. Poitras D, Dobrowolski J (2004) Toward perfect antireflection coatings. 2. Theory Appl Opt 43(6):1286–1295

    Article  Google Scholar 

  8. Maex K, Baklanov M, Shamiryan D, Brongersma S, Yanovitskaya Z (2003) Low dielectric constant materials for microelectronics. J Appl Phys 93(11):8793–8841

    Article  Google Scholar 

  9. Xi J-Q, Kim JK, Schubert EF (2005) Silica nanorod-array films with very low refractive indices. Nano Lett 5(7):1385–1387

    Article  Google Scholar 

  10. Kennedy SR, Brett MJ (2003) Porous broadband antireflection coating by glancing angle deposition. Appl Opt 42(22):4573–4579

    Article  Google Scholar 

  11. Xi J-Q, Schubert MF, Kim JK, Schubert EF, Chen M, Lin S-Y, Liu W, Smart JA (2007) Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photonics 1(3):176–179

    Google Scholar 

  12. Li J, Lan P, Xu H, Zhang X, Yang Y, Tan R, Jylha O, Lu Y (2012) Ultra-thin atomic-layer deposited alumina incorporating silica sol makes ultra-durable antireflection coatings. J Appl Phys 112(9):093516–093517

    Article  Google Scholar 

  13. Li J, Lu Y, Lan P, Zhang X, Xu W, Tan R, Song W, Choy K-L (2013) Design, preparation, and durability of TiO2/SiO2 and ZrO2/SiO2 double-layer antireflective coatings in crystalline silicon solar modules. Sol Energy 89:134–142

    Article  Google Scholar 

  14. Thomas IM (1992) Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44. Appl Opt 31(28):6145–6149

    Article  Google Scholar 

  15. Konjhodzic D, Schröter S, Marlow F (2007) Ultra-low refractive index mesoporous substrates for waveguide structures. Phys Status Solidi A 204(11):3676–3688

    Article  Google Scholar 

  16. Konjhodzic D, Bretinger H, Wilczok U, Dreier A, Ladenburger A, Schmidt M, Eich M, Marlow F (2005) Low-n mesoporous silica films: structure and properties. Appl Phys A 81(2):425–432

    Article  Google Scholar 

  17. Moghal J, Kobler J, Sauer Jr, Best J, Gardener M, Watt AA, Wakefield G (2012) High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles. ACS Appl Mater Interfaces 4(2):854–859

    Article  Google Scholar 

  18. Ghosh S, Das S, Sil A, Biswas PK (2012) Characterization of individual layers of an optical design based multilayered antireflection coating developed by sol–gel method. J Sol-gel Sci Tech 64(3):534–542

    Article  Google Scholar 

  19. Xiao B, Xia B, Lv H, Zhang X, Jiang B (2012) Sol–gel preparation of double-layer tri-wavelength antireflective coating. J Sol-gel Sci Tech 64(2):276–281

    Article  Google Scholar 

  20. Shin J-H, Ko HS, Kang H, Lee Y, Lee Y-I, Pletinkova O, Troconso JC, Dawson VL, Dawson TM (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144(5):689–702

    Article  Google Scholar 

  21. Shimomura H, Gemici Z, Cohen RE, Rubner MF (2010) Layer-by-layer-assembled high-performance broadband antireflection coatings. ACS Appl Mater Interfaces 2(3):813–820

    Article  Google Scholar 

  22. Li X, Du X, He J (2010) Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles. Langmuir 26(16):13528–13534

    Article  Google Scholar 

  23. Dafinone MI, Feng G, Brugarolas T, Tettey KE, Lee D (2011) Mechanical reinforcement of nanoparticle thin films using atomic layer deposition. ACS Nano 5(6):5078–5087

    Article  Google Scholar 

  24. Guillemot F, Brunet-Bruneau A, Bourgeat-Lami E, Gacoin T, Barthel E, Boilot J-P (2010) Latex-templated silica films: tailoring porosity to get a stable low-refractive index. Chem Mater 22(9):2822–2828

    Article  Google Scholar 

  25. Buskens P, Arfsten N, Habets R, Langermans H, Overbeek A, Scheerder J, Thies J, Viets N (2009) Innovation at DSM: state of the art single layer anti-reflective coatings for solar cell cover glass. Glass Perform Days

  26. Du Y, Luna LE, Tan WS, Rubner MF, Cohen RE (2010) Hollow silica nanoparticles in UV–visible antireflection coatings for poly (methyl methacrylate) substrates. ACS Nano 4(7):4308–4316

    Article  Google Scholar 

  27. Du X, He J (2011) Facile fabrication of hollow mesoporous silica nanospheres for superhydrophilic and visible/near-IR antireflection coatings. Chem Eur J 17(29):8165–8174

    Article  Google Scholar 

  28. Wan Y, Yu S-H (2008) Polyelectrolyte controlled large-scale synthesis of hollow silica spheres with tunable sizes and wall thicknesses. J Phys Chem C 112(10):3641–3647

    Article  Google Scholar 

  29. Lee D, Rubner MF, Cohen RE (2006) All-nanoparticle thin-film coatings. Nano Lett 6(10):2305–2312

    Article  Google Scholar 

  30. Fujiwara H (2007) In: Willey J (ed) Spectroscopic ellipsometry principles and applications. Wiley, England

    Chapter  Google Scholar 

  31. Barrow DA, Petroff TE, Tandon RP, Sayer M (1997) Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. J Appl Phys 81(2):876–881

    Article  Google Scholar 

  32. Yang Z, Zhu D, Lu D, Zhao M, Ning N, Liu Y (2003) Study of the relationship between porous ratio and effective index in nanoporous film. Opt Quant Electron 35:1133–1141

    Article  Google Scholar 

  33. Klein LC (1988) Sol-gel technology for thin films, fibers, preforms, electronics, and speciality shapes. Noyes Publications, USA

    Google Scholar 

  34. Wu G, Wang J, Shen J, Yang T, Zhang Q, Zhou B, Deng Z, Fan B, Zhou D, Zhang F (2000) A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings. Mater Sci Eng, B 78(2):135–139

    Article  Google Scholar 

  35. Ye H, Zhang X, Zhang Y, Ye L, Xiao B, Lv H, Jiang B (2011) Preparation of antireflective coatings with high transmittance and enhanced abrasion-resistance by a base/acid two-step catalyzed sol-gel process. Sol Energy Mater Sol Cells 95(8):2347–2351

    Article  Google Scholar 

  36. Ye L, Zhang Y, Zhang X, Hu T, Ji R, Ding B, Jiang B (2013) Sol–gel preparation of SiO2/TiO2/SiO2-TiO2 broadband antireflective coating for solar cell cover glass. Sol Energy Mater Sol Cells 111:160–164

    Article  Google Scholar 

  37. Zhang X, Lan P, Lu Y, Li J, Xu H, Zhang J, Lee Y, Rhee J, Choy K, Song W (2014) Multifunctional antireflection coatings based on novel hollow silica–silica nanocomposites. ACS Appl Mater Interfaces 6:1415–1423

    Article  Google Scholar 

  38. ISO 11998:2006(E) (2006) Paints and varnishes—determination of wet-scrub resistance and cleanability of coatings, International Organization for Standardization: Switzerland

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 11104290, No. 51102250, No. 11204146, No. 61275114), Ningbo Key Innovation Team (No. 2011B82005, No. 2009B21005), Ningbo Natural Science Foundation (2013A610137) and National Basic Research Program of China (2012CB934300 and 2011CBA00900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuehui Lu or Weijie Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lan, P., Li, J. et al. Sol–gel derived near-UV and visible antireflection coatings from hybridized hollow silica nanospheres. J Sol-Gel Sci Technol 71, 267–275 (2014). https://doi.org/10.1007/s10971-014-3364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3364-y

Keywords

Navigation