Skip to main content
Log in

Pd–Fe/TiO2 catalysts for phenol degradation with in situ generated H2O2

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study deals with the degradation of phenol over Pd–Fe/TiO2 catalysts at mild conditions in the presence of in situ generated H2O2 from oxygen and formic acid. This catalytic system demonstrated interesting ability to oxidize phenol by Fenton process in a one-pot reaction without the addition of ferrous ion. Lower Pd content catalysts, despite producing a higher hydrogen peroxide amount for bulk purposes, did not reach the same efficiency as the 5Pd–5Fe catalyst in phenol degradation. A close interaction between Pd and iron oxide species is necessary to obtain high active catalysts. These results highlight the advantage of in situ generation of H2O2, for oxidation reactions with respect to conventional Fenton process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pignatello JJ, Oliveros E, Mackay A (2006) Crit Rev Environ Sci Technol 36:1–84

    Article  Google Scholar 

  2. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S (2004) Appl Catal B 47:219–256

    Article  Google Scholar 

  3. Duesterberg CK, Cooper WJ, Waite TD (2005) Environ Sci Technol 39:5052–5058

    Article  Google Scholar 

  4. Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodriaguez JJ (2005) Environ Sci Technol 39:9295–9302

    Article  Google Scholar 

  5. Brillas E, Sires I, Oturan M (2009) Chem Rev 109:6570–6631

    Article  Google Scholar 

  6. Alnaizy R, Akgerman A (2000) Adv Environ Res 4:233–244

    Article  Google Scholar 

  7. Gonzalez-Olmos R, Roland U, Taufer H, Kopinke F-D, Georgi A (2009) Appl Catal B 89:356–364

    Article  Google Scholar 

  8. Hartmann M, Kullmann S, Keller H (2010) J Mater Chem 20:9002–9017

    Article  Google Scholar 

  9. Villa A, Janjic N, Spontoni P, Wang D, Sheng SD, Prati L (2009) Appl Catal A 364:221–228

    Article  Google Scholar 

  10. Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962–6984

    Article  Google Scholar 

  11. Burch R, Ellis PR (2003) Appl Catal B 42:203–211

    Article  Google Scholar 

  12. Yalfani MS, Contreras S, Medina F, Sueiras JE (2008) Chem Commun 33:3885–3887

    Google Scholar 

  13. Yalfani MS, Contreras S, Llorca J, Dominguez M, Sueiras JE, Medina F (2010) Phys Chem Chem Phys 12:14673–14676

    Article  Google Scholar 

  14. Yalfani MS, Contreras S, Medina F, Sueiras JE (2009) Appl Catal B 89:519–526

    Article  Google Scholar 

  15. Meng F, Li J, Cushing SK, Zhi M, Wu N (2013) J Am Chem Soc 135:10286–10289

    Article  Google Scholar 

  16. Meng F, Li J, Cushing SK, Bright J, Zhi M, Rowley JD, Hong Z, Manivannan A, Bristow AD, Wu N (2013) ACS Catal 3:746–751

    Article  Google Scholar 

  17. Bravo-Suarez JJ, Bando KK, Akita T, Fujitani T, Oyama TJ (2008) Chem Commun 28:3272–3274

    Article  Google Scholar 

  18. Contreras S, Yalfani MS, Medina F, Sueiras JE (2011) Water Sci Technol 63:2017–2024

    Article  Google Scholar 

  19. Schaub R, Wahlström E, Ronnau A, Lægsgaard E, Stensgaard I, Besenbacher F (2003) Science 299(5605):377–379

    Article  Google Scholar 

  20. Pinna F, Menegazzo F, Signoretto M, Canton P, Fagherazzi G, Pernicone N (2001) Appl Catal A 219:195–200

    Article  Google Scholar 

  21. Lieske H, Volter J (1985) J Phys Chem 89:1841–1842

    Article  Google Scholar 

  22. Berry FJ, Smart LE, Sai Prasad PS, Lingaiah N, Kanta Rao P (2000) Appl Catal A 204:191–201

    Article  Google Scholar 

  23. Xu GP, Zhu YX, Ma J, Yan HG, Xie YC (1997) Stud Surf Sci Catal 112:333–338

    Article  Google Scholar 

  24. Pinna F, Selva M, Signoretto M, Strukul G, Boccuzzi F, Benedetti A, Canton P, Fagherazzi G (1994) J Catal 150:356–367

    Article  Google Scholar 

  25. Leitz G, Nimz M, Volter J, Lazar K, Guczi L (1988) Appl Catal 45:71–83

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Mohammad S. Yalfani from the Catalytic Center of Aachen University (Germany). We express our appreciation for his valuable discussion and contribution. Mercè Moncusi Mercadé and Mariana Stefanova Stankova from Universitat Rovira i Virgili (Spain) are acknowledged for TEM measurements. F. Medina also acknowledges ICREA Academia award from Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Triki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triki, M., Contreras, S. & Medina, F. Pd–Fe/TiO2 catalysts for phenol degradation with in situ generated H2O2 . J Sol-Gel Sci Technol 71, 96–101 (2014). https://doi.org/10.1007/s10971-014-3333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3333-5

Keywords

Navigation