Skip to main content

Sol–gel synthesis, optical and structural characterization of ZrOS nanopowder

Abstract

In this paper, we report the synthesis of tetragonal zirconium oxysulfide t-ZrOS nanopowder by the sol–gel method using water solution of a precursor containing thiourea [CS(NH2)2] and zirconium in the form of an anionic oxalate complex [Zr(C2O4)]4−. The tetragonal t-ZrOS structure with space group P4/nmm revealed by X-ray patterns showed preferred orientation along (101) plane. For surface morphology, compositional and optical absorption studies, scanning electron microscopy, energy dispersive X-ray and ultraviolet–visible spectroscopy were employed for characterization of the powder respectively. A nearly constant value of the refractive index at higher wavelength λ ≥ 1,100 nm was found to be 2.19. High indirect and direct optical band gap of ~2.0 and 2.50 eV with absorbance <40 % were obtained for the powder.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Peshev P, Stambolova I, Vassilev S, Stefanov P, Blaskov V, Starbova K, Starbov N (2003) Mater Sci Eng B 97:106–110

    Article  Google Scholar 

  2. Ro Y-A, Kim S-J, Lee Y-K, Kim CH (2001) Bull Korean Chem Soc 22:1231

    Google Scholar 

  3. Chen L, Liu Y, Li Y (2004) J Alloys Compd 381:266–271

    Article  Google Scholar 

  4. Quan ZW, Wang LS, Lin J (2005) Mater Res Bull 40:810

    Article  Google Scholar 

  5. Jia R, Yang W, Bai Y, Li T (2006) Opt Mater 28:246

    Article  Google Scholar 

  6. Maeda N, Wada N, Onoda H, Maegawa A, Kojima K (2003) Thin Solid Films 445:382

    Article  Google Scholar 

  7. Assefa Z, Haire RG, Raison PE (2004) Spectrochim Acta A 60:89

    Article  Google Scholar 

  8. Kiisk V, Sildos I, Lange S, Reedo V, Tatte T, Kirm M, Aarik J (2005) Appl Surf Sci 247:412

    Article  Google Scholar 

  9. De la Rosa E, Diaz-Torres LA, Salas P, Rodrı′guez RA (2005) Opt Mater 27:1320

    Article  Google Scholar 

  10. Cabello G, Lillo L, Caro C, Chornik B, Soto MA, delRı′o R, Tejos M (2010) J Phys Chem Solids 71:1367–1372

    Article  Google Scholar 

  11. Steele BCH, Drennan J, Slotwinski RK, Bonanos N, Butler EP (1981) Adv Ceram 3:286

    Google Scholar 

  12. Badwall SPS (1990) Appl Phys A 50:449

    Article  Google Scholar 

  13. Yamaguchi T (1994) Catal Today 20:199

    Article  Google Scholar 

  14. Atik M, Aegerter MA (1992) J Non Cryst Solids 813:147–148

    Google Scholar 

  15. Celik E, Avci E, Hascicek YS (2000) Phys C 340:193

    Article  Google Scholar 

  16. Hauser OZ (1907) Anorg Chem 53:74

    Article  Google Scholar 

  17. McCullough JD, Brewer L, Bromley LA (1948) Acta Cryst 1:287

    Article  Google Scholar 

  18. Malyi OI, Wu P, Kulish VV, Bai K, Chen Z (2012) Solid State Ion 212:117–122

    Article  Google Scholar 

  19. Licheron M, Jouan G, Husson E (1997) J Eur Ceram Soc 17:1453–1457

    Article  Google Scholar 

  20. Vallet-Regı′ M, Nicolopoulos S, Roma′n J, Martı′nez JL, Gonza′lez-Calbet JM (1997) J Mater Chem 7:1017

    Article  Google Scholar 

  21. Stryckmans O, Segato T, Duvigneaud PH (1955) In: Tranchina BS, Bellosi A (eds) Fourth euroceramics, vol 9. Gruppo Editoriale Faenza Editrice S.p.a, Italy

    Google Scholar 

  22. Stelzer NHJ, Schoonman J (1996) J Mater Synth Process 4:429

    Google Scholar 

  23. Ruiz H, Vesteghem H, Di Giampaolo AR, Lira J (1997) Surf Coat Technol 89:77

    Article  Google Scholar 

  24. Wells AF (1984) Structural inorganic chemistry. Clarendon Press, Oxford, p 487

    Google Scholar 

  25. Mikó A, Demirel AL, Somer M (2010) Mater Sci Eng 12:12–19

    Google Scholar 

  26. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River, p 388

    Google Scholar 

  27. Joy K, John Berlin I, Nair PB, Lakshmi JS, Daniel PG, Thomas PV (2011) J Phys Chem Solids 72:673–677

    Article  Google Scholar 

  28. Moss TS (1973) Semiconductor opto-electronics. Butterworth, London, p 48

    Book  Google Scholar 

  29. Pankove JI (1971) Optical processes in semiconductors. Dove, New York, p 103

    Google Scholar 

  30. Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  31. Spitzer WG, Fan HV (1957) Phys Rev 166:882

    Article  Google Scholar 

  32. Reyna-Garcia G, Garcia-Hipolito M, Guzman-Mendoza J, Aguilar-Frutis M, Falcony C (2004) J Mater Sci Mater Electron 15:439–446

    Article  Google Scholar 

  33. Moss TS (1973) Semiconductor opto-electronics. Butterworth, London, p 48

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. I. Amaechi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uduh, U.C., Obodo, R.M., Esaenwi, S. et al. Sol–gel synthesis, optical and structural characterization of ZrOS nanopowder. J Sol-Gel Sci Technol 71, 79–85 (2014). https://doi.org/10.1007/s10971-014-3331-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3331-7

Keywords

  • Tetragonal ZrOS nanopowder
  • Anionic oxalate complex
  • Sol–gel technique
  • Absorbance