Skip to main content
Log in

Polymerization behavior and gel properties of ethane, ethylene and acetylene-bridged polysilsesquioxanes

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Soluble bridged polysilsesquioxanes with a range of molecular weight were synthesized from bis(triethoxysilyl)ethane, ethylene, and acetylene (BTES-E1, -E2, and -E3) via hydrolysis and polycondensation reaction by adjusting the water amount. Polymerization behavior of these three trialkoxysilanes was investigated by monitoring the reaction progress by GPC, and 29Si NMR spectrometry of the resulting polymers, poly(BTES-E1), poly(BTES-E2), and poly(BTES-E3), showing that BTES-E1 generated cyclic oligomers at the early stage. In contrast, polymerization of BTES-E2 and BTES-E3 provided no detectable amounts of cyclic oligomers, but afforded linear polymers only. Bulk gels were also prepared by curing the polymers. The gel from poly(BTES-E3) exhibited high thermal stability derived from the rigid acetylene spacer with respect to thermogravimetric analysis. On the other hand, the polymer film of BTES-E1 showed the highest pencil hardness index among the polymers, indicating the tight siloxane network of poly(BTES-E1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shimojima A, Kuroda K (2003) Angew Chem Int Ed 42:4057–4060

    Article  Google Scholar 

  2. Suzuki J, Shimojima A, Fujimoto Y, Kuroda K (2008) Chem Eur J 14:973–980

    Article  Google Scholar 

  3. Seino M, Wang W, Lofgreen J, Puzzo D, Manabe T, Ozin G (2011) J Am Chem Soc 133:18082–18085

    Article  Google Scholar 

  4. Lee H, Shibata T, Kanezashi M, Mizumo T, Ohshita J (2011) J Memb Sci 383:152–158

    Article  Google Scholar 

  5. Shea K, Loy D, Webster O (1992) J Am Chem Soc 114:6700–6710

    Article  Google Scholar 

  6. Shea K, Loy D (2001) Chem Mater 13:3306–3319

    Article  Google Scholar 

  7. Corriu R, Moreau J, Thepot P, Man M (1992) Chem Mater 4:1217–1224

    Article  Google Scholar 

  8. Rac B, Hegyes P, Forgo P, Molnar A (2006) Appl Catal A 299:193–201

    Article  Google Scholar 

  9. Sasidharan M, Bhaumik A (2013) ACS Appl Mater Interfaces 5:2618–2625

    Article  Google Scholar 

  10. Burleigh M, Markowitz M, Spector M, Gaber B (2002) Environ Sci Technol 36:2515–2518

    Article  Google Scholar 

  11. Kruk M, Jaroniec M, Guan S, Inagaki S (2001) J Phys Chem B 105:681–689

    Article  Google Scholar 

  12. Kanezashi M, Yada K, Yoshioka T, Tsuru T (2009) J Am Chem Soc 131:414–415

    Article  Google Scholar 

  13. Kanezashi M, Miyauchi S, Nagasawa H, Yoshioka T, Tsuru T (2013) RSC Adv 3:12080–12083

    Article  Google Scholar 

  14. Xu R, Kanezashi M, Yoshioka T, Okuda T, Ohshita J, Tsuru T (2013) ACS Appl Mater Interfaces 5:6147–6154

    Article  Google Scholar 

  15. Wang W, Grozea D, Kim A, Perovic D, Ozin G (2010) Adv Mater 22:99–102

    Article  Google Scholar 

  16. Dubois G, Volksen W, Magbitang T, Miller R, Gage D, Dauskardt R (2007) Adv Mater 19:3989–3994

    Article  Google Scholar 

  17. Masse S, Laurent G, Babonneau F (2007) Non-Cryst Solids 353:1109–1119

    Article  Google Scholar 

  18. Saito H, Nishio Y, Kobayashi M, Sugahara Y (2011) J Sol–Gel Sci Technol 57:51–56

    Article  Google Scholar 

  19. Sakka S, Tanaka Y, Kokubo T (1986) J Non-Cryst Solids 82:24–30

    Article  Google Scholar 

  20. Gunji T, Hayashi Y, Komatsubara A, Arimitsu K, Abe Y (2012) Appl Organometal Chem 26:32–36

    Article  Google Scholar 

  21. Gunji T, Itagaki S, Kajiwara T, Abe Y, Hatakeyama T, Aoki R (2009) Polym J 41:541–546

    Article  Google Scholar 

  22. Gunji T, Yamamoto K, Tomobe A, Abe N, Abe Y (2012) Inter J Polymer Sci, Article ID 568301, 5 pp

  23. Loy D, Carpenter J, Alam T, Shaltout R, Dorhout P, Greaves J, Small J, Shea K (1998) J Am Chem Soc 10:4129–4140

    Google Scholar 

  24. Loy D, Carpenter J, Yamanaka S, McClain M, Greaves J, Hobson S, Shea K (1998) Chem Mater 10:4129–4140

    Article  Google Scholar 

  25. Fischer C, Raith A, Mink J, Sieber G, Cokoja M, Kuhn F (2011) J Organometal Chem 696:2910–2917

    Article  Google Scholar 

  26. Corriu R, Moreau J, Thepot P, Man M (1996) Chem Mater 8:100–106

    Article  Google Scholar 

  27. Loy D, Carpenter J, Alam T, Shaltout R, Dorhout P, Greaves J, Small J, Shea K (1999) J Am Chem Soc 121:5413–5425

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joji Ohshita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, K., Ohshita, J., Mizumo, T. et al. Polymerization behavior and gel properties of ethane, ethylene and acetylene-bridged polysilsesquioxanes. J Sol-Gel Sci Technol 71, 24–30 (2014). https://doi.org/10.1007/s10971-014-3322-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3322-8

Keywords

Navigation