Advertisement

Journal of Sol-Gel Science and Technology

, Volume 70, Issue 2, pp 216–226 | Cite as

“Integrative sol–gel chemistry”: a nanofoundry for materials science

  • Marco Faustini
  • David Grosso
  • Cédric Boissière
  • Renal Backov
  • Clément SanchezEmail author
Original Paper

Abstract

Integrative sol–gel chemistry based strategies allow, through the strong coupling between materials chemistry and advanced processing, the fabrication of functional inorganic and hybrid materials. The following article will highlight some of the main accomplishments performed during the last years in the design of nano- and multi-scale structured materials shaped as thin films, powders and monoliths with additional functionalities and outstanding properties in several fields of application such as optics, catalysis and nanomedicine. In particular we discuss the key role played by the adapted liquid processing of sol–gel based solution. We will describe some technologies (including dip coating, spray drying, droplet-microfluidics, ink-jet and foaming) in which a high degree of control in term of liquid shaping/evaporation/manipulation is required in order to achieve specific functionalities.

Keywords

Integrative approach Sol–gel Nanostructured Hierarchical Processing 

References

  1. 1.
    Mann S, Burkett SL, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT (1997) Sol–gel synthesis of organized matter. Chem Mater 9(11):2300–2310. doi: 10.1021/cm970274u CrossRefGoogle Scholar
  2. 2.
    Backov R (2006) Combining soft matter and soft chemistry: integrative chemistry towards designing novel and complex multiscale architectures. Soft Matter 2(6):452–464. doi: 10.1039/B602579J CrossRefGoogle Scholar
  3. 3.
    Nicole L, Rozes L, Sanchez C (2010) Integrative approaches to hybrid multifunctional materials: from multidisciplinary research to applied technologies. Adv Mater 22(29):3208–3214. doi: 10.1002/adma.201000231 CrossRefGoogle Scholar
  4. 4.
    Innocenzi P, Kidchob T, Falcaro P, Takahashi M (2007) Patterning techniques for mesostructured films. Chem Mater 20(3):607–614. doi: 10.1021/cm071784j CrossRefGoogle Scholar
  5. 5.
    Sanchez C, Boissiere C, Cassaignon S, Chaneac C, Durupthy O, Faustini M, Grosso D, Laberty-Robert C, Nicole L, Portehault D, Ribot F, Rozes L, Sassoye C (2013) Molecular engineering of functional inorganic and hybrid materials. Chem Mater. doi: 10.1021/cm402528b Google Scholar
  6. 6.
    Soler-Illia GJdAA, Sanchez C, Lebeau B, Patarin J (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102(11):4093–4138. doi: 10.1021/cr0200062 CrossRefGoogle Scholar
  7. 7.
    Niederberger M, Pinna N (2009) Aqueous and nonaqueous sol–gel chemistry. In: Metal oxide nanoparticles in organic solvents. Engineering materials and processes. Springer, London, pp 7–18. doi: 10.1007/978-1-84882-671-7_2
  8. 8.
    Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341. doi: 10.1016/0079-6786(88)90005-2 CrossRefGoogle Scholar
  9. 9.
    Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753. doi: 10.1039/C0CS00136H CrossRefGoogle Scholar
  10. 10.
    Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010) “Chimie douce”: a land of opportunities for the designed construction of functional inorganic and hybrid organic–inorganic nanomaterials. C R Chim 13(1–2):3–39. doi: 10.1016/j.crci.2009.06.001 CrossRefGoogle Scholar
  11. 11.
    Sanchez C, Ribot F (1994) Design of hybrid organic–inorganic materials synthesized via sol–gel chemistry. New J Chem 18(10):1007–1047Google Scholar
  12. 12.
    Pega S, Boissière C, Grosso D, Azaïs T, Chaumonnot A, Sanchez C (2009) Direct aerosol synthesis of large-pore amorphous mesostructured aluminosilicates with superior acid-catalytic properties. Angew Chem Int Ed 48(15):2784–2787. doi: 10.1002/anie.200805217 CrossRefGoogle Scholar
  13. 13.
    Schüth F (2001) Non-siliceous mesostructured and mesoporous materials. Chem Mater 13(10):3184–3195. doi: 10.1021/cm011030j CrossRefGoogle Scholar
  14. 14.
    Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Hierarchically ordered oxides. Science 282(5397):2244–2246. doi: 10.1126/science.282.5397.2244 CrossRefGoogle Scholar
  15. 15.
    Holland BT, Blanford CF, Stein A (1998) Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281(5376):538–540. doi: 10.1126/science.281.5376.538 CrossRefGoogle Scholar
  16. 16.
    Velev OD, Jede TA, Lobo RF, Lenhoff AM (1997) Porous silica via colloidal crystallization. Nature 389(6650):447–448CrossRefGoogle Scholar
  17. 17.
    Arsenault AC, Clark TJ, von Freymann G, Cademartiri L, Sapienza R, Bertolotti J, Vekris E, Wong S, Kitaev V, Manners I, Wang RZ, John S, Wiersma D, Ozin GA (2006) From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat Mater 5(3):179–184. http://www.nature.com/nmat/journal/v5/n3/suppinfo/nmat1588_S1.html Google Scholar
  18. 18.
    van Bommel KJC, Friggeri A, Shinkai S (2003) Organic templates for the generation of inorganic materials. Angew Chem Int Ed 42(9):980–999. doi: 10.1002/anie.200390284 CrossRefGoogle Scholar
  19. 19.
    Llusar M, Roux C, Pozzo JL, Sanchez C (2003) Design of organically functionalised hybrid silica fibres through the use of anthracenic organogelators. J Mater Chem 13(3):442–444. doi: 10.1039/B212465N CrossRefGoogle Scholar
  20. 20.
    Jiang X, Brinker CJ (2006) Aerosol-assisted self-assembly of single-crystal core/nanoporous shell particles as model controlled release capsules. J Am Chem Soc 128(14):4512–4513. doi: 10.1021/ja058260+ CrossRefGoogle Scholar
  21. 21.
    Malfatti L, Falcaro P, Marongiu D, Casula MF, Amenitsch H, Innocenzi P (2009) Self-assembly of shape controlled hierarchical porous thin films: mesopores and nanoboxes. Chem Mater 21(20):4846–4850. doi: 10.1021/cm9013859 CrossRefGoogle Scholar
  22. 22.
    Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4(2):67–112. doi: 10.1023/A:1009627216939 CrossRefGoogle Scholar
  23. 23.
    Nakanishi K, Tanaka N (2007) Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res 40(9):863–873. doi: 10.1021/ar600034p CrossRefGoogle Scholar
  24. 24.
    Bunz UHF (2006) Breath figures as a dynamic templating method for polymers and nanomaterials. Adv Mater 18(8):973–989. doi: 10.1002/adma.200501131 CrossRefGoogle Scholar
  25. 25.
    Sakatani Y, Boissière C, Grosso D, Nicole L, Soler-Illia GJAA, Sanchez C (2007) Coupling nanobuilding block and breath figures approaches for the designed construction of hierarchically templated porous materials and membranes. Chem Mater 20(3):1049–1056. doi: 10.1021/cm701986b CrossRefGoogle Scholar
  26. 26.
    Faustini M, Boissière C, Nicole L, Grosso D (2013) From chemical solutions to inorganic nanostructured materials: a journey into evaporation-driven processes. Chem Mater. doi: 10.1021/cm402132y Google Scholar
  27. 27.
    Faustini M, Louis B, Albouy PA, Kuemmel M, Grosso D (2010) Preparation of sol–gel films by dip-coating in extreme conditions. J Phys Chem C 114(17):7637–7645. doi: 10.1021/jp9114755 CrossRefGoogle Scholar
  28. 28.
    Grosso D (2011) How to exploit the full potential of the dip-coating process to better control film formation. J Mater Chem 21(43):17033–17038. doi: 10.1039/C1JM12837J CrossRefGoogle Scholar
  29. 29.
    Krins N, Faustini M, Louis B, Grosso D (2010) Thick and crack-free nanocrystalline mesoporous TiO2 films obtained by capillary coating from aqueous solutions. Chem Mater 22(23):6218–6220. doi: 10.1021/cm102524u CrossRefGoogle Scholar
  30. 30.
    Fisher A, Kuemmel M, Järn M, Linden M, Boissière C, Nicole L, Sanchez C, Grosso D (2006) Surface nanopatterning by organic/inorganic self-assembly and selective local functionalization. Small 2(4):569–574. doi: 10.1002/smll.200500333 CrossRefGoogle Scholar
  31. 31.
    Kuemmel M, Allouche J, Nicole L, Boissière C, Laberty C, Amenitsch H, Sanchez C, Grosso D (2007) A chemical solution deposition route to nanopatterned inorganic material surfaces. Chem Mater 19(15):3717–3725. doi: 10.1021/cm0706245 CrossRefGoogle Scholar
  32. 32.
    Angelomé PC, Fuertes MC, Soler-Illia GJAA (2006) Multifunctional, multilayer, multiscale: integrative synthesis of complex macroporous and mesoporous thin films with spatial separation of porosity and function. Adv Mater 18(18):2397–2402. doi: 10.1002/adma.200600439 CrossRefGoogle Scholar
  33. 33.
    Innocenzi P, Malfatti L, Soler-Illia GJAA (2011) Hierarchical mesoporous films: from self-assembly to porosity with different length scales. Chem Mater 23(10):2501–2509. doi: 10.1021/cm200050r CrossRefGoogle Scholar
  34. 34.
    Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) Review of sol–gel thin film formation. J Non-Cryst Solids 147–148:424–436. doi: 10.1016/S0022-3093(05)80653-2 CrossRefGoogle Scholar
  35. 35.
    Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20(3):682–737. doi: 10.1021/cm702100t CrossRefGoogle Scholar
  36. 36.
    Faustini M, Nicole L, Boissière C, Innocenzi P, Sanchez C, Grosso D (2010) Hydrophobic, antireflective, self-cleaning, and antifogging sol–gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells. Chem Mater 22(15):4406–4413. doi: 10.1021/cm100937e CrossRefGoogle Scholar
  37. 37.
    Carretero-Genevrier A, Boissiere C, Nicole L, Grosso D (2012) Distance dependence of the photocatalytic efficiency of TiO2 revealed by in situ ellipsometry. J Am Chem Soc 134(26):10761–10764. doi: 10.1021/ja303170h CrossRefGoogle Scholar
  38. 38.
    Laberty-Robert C, Kuemmel M, Allouche J, Boissiere C, Nicole L, Grosso D, Sanchez C (2008) Sol–gel route to advanced nanoelectrode arrays (NEA) based on titania gold nanocomposites. J Mater Chem 18(11):1216–1221. doi: 10.1039/B718120E CrossRefGoogle Scholar
  39. 39.
    Fontaine O, Laberty-Robert C, Sanchez C (2012) Sol–gel route to zirconia–Pt-nanoelectrode arrays 8 nm in radius: their geometrical impact in mass transport. Langmuir 28(7):3650–3657. doi: 10.1021/la202651b CrossRefGoogle Scholar
  40. 40.
    Faustini M, Marmiroli B, Malfatti L, Louis B, Krins N, Falcaro P, Grenci G, Laberty-Robert C, Amenitsch H, Innocenzi P, Grosso D (2011) Direct nano-in-micropatterning of TiO2 thin layers and TiO2/Pt nanoelectrode arrays by deep X-ray lithography. J Mater Chem 21(11):3597–3603. doi: 10.1039/c0jm03493b CrossRefGoogle Scholar
  41. 41.
    Lockwood DJ, Rowell NL, Berbezier I, Amiard G, Ronda A, Faustini M, Grosso D (2010) Predicting size distributions of ge nanodots from their photoluminescence. J Electrochem Soc 157(12):H1160–H1164. doi: 10.1149/1.3502565 CrossRefGoogle Scholar
  42. 42.
    Allouche J, Lantiat D, Kuemmel M, Faustini M, Laberty C, Chanéac C, Tronc E, Boissière C, Nicole L, Sanchez C, Grosso D (2010) Direct electrogeneration of FePt nanoparticles into highly ordered inorganic nanopattern stabilising membranes. J Sol–Gel Sci Technol 53(3):551–554. doi: 10.1007/s10971-009-2130-z CrossRefGoogle Scholar
  43. 43.
    Faustini M, Capobianchi A, Varvaro G, Grosso D (2012) Highly controlled dip-coating deposition of fct FePt nanoparticles from layered salt precursor into nanostructured thin films: an easy way to tune magnetic and optical properties. Chem Mater 24(6):1072–1079. doi: 10.1021/cm2033492 CrossRefGoogle Scholar
  44. 44.
    Grobis M, Schulze C, Faustini M, Grosso D, Hellwig O, Makarov D, Albrecht M (2011) Recording study of percolated perpendicular media. Appl Phys Lett 98(19):192504-1–192504-3CrossRefGoogle Scholar
  45. 45.
    Schulze C, Faustini M, Lee J, Schletter H, Lutz MU, Krone P, Gass M, Sader K, Bleloch AL, Hietschold M, Fuger M, Suess D, Fidler J, Wolff U, Neu V, Grosso D, Makarov D, Albrecht M (2010) Magnetic films on nanoperforated templates: a route towards percolated perpendicular media. Nanotechnology 21(49). doi: 10.1088/0957-4484/21/49/495701
  46. 46.
    Faustini M, Drisko GL, Boissiere C, Grosso D (2014) Liquid deposition approaches to self-assembled periodic nanomasks. Scr Mater 74:13–18. doi: 10.1016/j.scriptamat.2013.07.029 CrossRefGoogle Scholar
  47. 47.
    Faustini M, Drisko GL, Letailleur AA, Montiel RS, Boissiere C, Cattoni A, Haghiri-Gosnet AM, Lerondel G, Grosso D (2013) Self-assembled titanium calcium oxide nanopatterns as versatile reactive nanomasks for dry etching lithographic transfer with high selectivity. Nanoscale 5(3):984–990. doi: 10.1039/c2nr33341d CrossRefGoogle Scholar
  48. 48.
    Faustini M, Vayer M, Marmiroli B, Hillmyer M, Amenitsch H, Sinturel C, Grosso D (2010) Bottom-up approach toward titanosilicate mesoporous pillared planar nanochannels for nanofluidic applications. Chem Mater 22(20):5687–5694. doi: 10.1021/cm101502n CrossRefGoogle Scholar
  49. 49.
    Sassoye C, Laberty C, Le Khanh H, Cassaignon S, Boissière C, Antonietti M, Sanchez C (2009) Block-copolymer-templated synthesis of electroactive RuO2-based mesoporous thin films. Adv Funct Mater 19(12):1922–1929. doi: 10.1002/adfm.200801831 CrossRefGoogle Scholar
  50. 50.
    Kuemmel M, Grosso D, Boissière C, Smarsly B, Brezesinski T, Albouy PA, Amenitsch H, Sanchez C (2005) Thermally stable nanocrystalline γ-alumina layers with highly ordered 3D mesoporosity. Angew Chem Int Ed 44(29):4589–4592. doi: 10.1002/anie.200500037 CrossRefGoogle Scholar
  51. 51.
    Soler-Illia GJAA, Angelome PC, Fuertes MC, Grosso D, Boissiere C (2012) Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale 4(8):2549–2566. doi: 10.1039/C2NR11817C CrossRefGoogle Scholar
  52. 52.
    Grosso D, Boissiere C, Smarsly B, Brezesinski T, Pinna N, Albouy PA, Amenitsch H, Antonietti M, Sanchez C (2004) Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nat Mater 3(11):787–792CrossRefGoogle Scholar
  53. 53.
    Lepoutre S, Julian-Lopez B, Sanchez C, Amenitsch H, Linden M, Grosso D (2010) Nanocasted mesoporous nanocrystalline ZnO thin films. J Mater Chem 20(3):537–542. doi: 10.1039/B912613A CrossRefGoogle Scholar
  54. 54.
    Ferreira P, Hou RZ, Wu A, Willinger M-G, Vilarinho PM, Mosa J, Laberty-Robert C, Boissière C, Grosso D, Sanchez C (2011) Nanoporous piezo-and ferroelectric thin films. Langmuir 28(5):2944–2949. doi: 10.1021/la204168w CrossRefGoogle Scholar
  55. 55.
    Hamd W, Cobo S, Fize J, Baldinozzi G, Schwartz W, Reymermier M, Pereira A, Fontecave M, Artero V, Laberty-Robert C, Sanchez C (2012) Mesoporous [small alpha]-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation. Phys Chem Chem Phys 14(38):13224–13232. doi: 10.1039/C2CP42535A CrossRefGoogle Scholar
  56. 56.
    Muller G, Boissiere C, Grosso D, Ringuede A, Laberty-Robert C, Sanchez C (2012) Understanding crystallization processes of NiO/Ce0.9Gd0.1O2-[small delta] sol–gel processed thin films for the design of efficient electrodes: an in situ thermal ellipsometry analysis. J Mater Chem 22(18):9368–9373. doi: 10.1039/C2JM16550C CrossRefGoogle Scholar
  57. 57.
    Louis B, Krins N, Faustini M, Grosso D (2011) Understanding crystallization of anatase into binary SiO2/TiO2 sol–gel optical thin films: an in situ thermal ellipsometry analysis. J Phys Chem C 115(7):3115–3122. doi: 10.1021/jp109653p CrossRefGoogle Scholar
  58. 58.
    Bass JD, Grosso D, Boissiere C, Sanchez C (2008) Pyrolysis, crystallization, and sintering of mesostructured titania thin films assessed by in situ thermal ellipsometry. J Am Chem Soc 130(25):7882–7897. doi: 10.1021/ja078140x CrossRefGoogle Scholar
  59. 59.
    Carretero-Genevrier A, Gich M, Picas L, Gazquez J, Drisko GL, Boissiere C, Grosso D, Rodriguez-Carvajal J, Sanchez C (2013) Soft-chemistry–based routes to epitaxial α-quartz thin films with tunable textures. Science 340(6134):827–831. doi: 10.1126/science.1232968 CrossRefGoogle Scholar
  60. 60.
    Horcajada P, Serre C, Grosso D, Boissière C, Perruchas S, Sanchez C, Férey G (2009) Colloidal route for preparing optical thin films of nanoporous metal-organic frameworks. Adv Mater 21(19):1931–1935. doi: 10.1002/adma.200801851 CrossRefGoogle Scholar
  61. 61.
    Buonsanti R, Pick TE, Krins N, Richardson TJ, Helms BA, Milliron DJ (2012) Assembly of ligand-stripped nanocrystals into precisely controlled mesoporous architectures. Nano Lett 12(7):3872–3877. doi: 10.1021/nl302206s CrossRefGoogle Scholar
  62. 62.
    Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398(6724):223–226CrossRefGoogle Scholar
  63. 63.
    Pang J, Stuecker JN, Jiang Y, Bhakta AJ, Branson ED, Li P, Cesarano J, Sutton D, Calvert P, Brinker CJ (2008) Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks. Small 4(7):982–989. doi: 10.1002/smll.200700206 CrossRefGoogle Scholar
  64. 64.
    Boissiere C, Grosso D, Chaumonnot A, Nicole L, Sanchez C (2011) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23(5):599–623. doi: 10.1002/adma.201001410 CrossRefGoogle Scholar
  65. 65.
    Tsung C-K, Fan J, Zheng N, Shi Q, Forman AJ, Wang J, Stucky GD (2008) A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. Angew Chem Int Ed 47(45):8682–8686. doi: 10.1002/anie.200802487 CrossRefGoogle Scholar
  66. 66.
    Debecker DP, Stoyanova M, Colbeau-Justin F, Rodemerck U, Boissière C, Gaigneaux EM, Sanchez C (2012) One-pot aerosol route to MoO3-SiO2-Al2O3 catalysts with ordered super microporosity and high olefin metathesis activity. Angew Chem Int Ed 51(9):2129–2131. doi: 10.1002/anie.201106277 CrossRefGoogle Scholar
  67. 67.
    Colbeau-Justin F, Boissière C, Chaumonnot A, Bonduelle A, Sanchez C (2013) Aerosol route to highly efficient (Co)Mo/SiO2 mesoporous catalysts. Adv Funct Mater. doi: 10.1002/adfm.201302156 Google Scholar
  68. 68.
    Faustini M, Kim J, Jeong GY, Kim JY, Moon HR, Ahn WS, Kim DP (2013) Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets. J Am Chem Soc 135(39):14619–14626. doi: 10.1021/ja4039642 CrossRefGoogle Scholar
  69. 69.
    Argyo C, Weiss V, Bräuchle C, Bein T (2013) Multifunctional mesoporous silica nanoparticles as a Universal platform for drug delivery. Chem Mater. doi: 10.1021/cm402592t Google Scholar
  70. 70.
    Liu J, Stace-Naughton A, Jiang X, Brinker CJ (2009) Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 131(4):1354–1355. doi: 10.1021/ja808018y CrossRefGoogle Scholar
  71. 71.
    Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, Hanna TN, Liu J, Phillips B, Carter MB, Carroll NJ, Jiang X, Dunphy DR, Willman CL, Petsev DN, Evans DG, Parikh AN, Chackerian B, Wharton W, Peabody DS, Brinker CJ (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10(6):389–397CrossRefGoogle Scholar
  72. 72.
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003. doi: 10.1038/nmat3776 CrossRefGoogle Scholar
  73. 73.
    Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 46(3):792–801. doi: 10.1021/ar3000986 CrossRefGoogle Scholar
  74. 74.
    Fontecave T, Sanchez C, Azaïs T, Boissière C (2012) Chemical modification as a versatile tool for tuning stability of silica based mesoporous carriers in biologically relevant conditions. Chem Mater 24(22):4326–4336. doi: 10.1021/cm302142k CrossRefGoogle Scholar
  75. 75.
    Fontecave T, Boissiere C, Baccile N, Plou FJ, Sanchez C (2013) Using evaporation-induced self-assembly for the direct drug templating of therapeutic vectors with high loading fractions, tunable drug release, and controlled degradation. Chem Mater 25(23):4671–4678. doi: 10.1021/cm401807m CrossRefGoogle Scholar
  76. 76.
    Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39(3):1183–1202. doi: 10.1039/B821324K CrossRefGoogle Scholar
  77. 77.
    Ameloot R, Vermoortele F, Vanhove W, Roeffaers MBJ, Sels BF, De Vos DE (2011) Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability. Nat Chem 3(5):382–387. http://www.nature.com/nchem/journal/v3/n5/abs/nchem.1026.html-supplementary-information Google Scholar
  78. 78.
    De Los Cobos O, Fousseret B, Lejeune M, Rossignol F, Dutreilh-Colas M, Carrion C, Boissière C, Ribot F, Sanchez C, Cattoën X, Wong Chi Man M, Durand JO (2012) Tunable multifunctional mesoporous silica microdots arrays by combination of inkjet printing, EISA, and click chemistry. Chem Mater 24(22):4337–4342. doi: 10.1021/cm3022769 CrossRefGoogle Scholar
  79. 79.
    Liu X, Shen Y, Yang R, Zou S, Ji X, Shi L, Zhang Y, Liu D, Xiao L, Zheng X, Li S, Fan J, Stucky GD (2012) Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett 12(11):5733–5739. doi: 10.1021/nl302992q CrossRefGoogle Scholar
  80. 80.
    Carn F, Colin A, Achard MF, Deleuze H, Saadi Z, Backov R (2004) Rational design of macrocellular silica scaffolds obtained by a tunable sol–gel foaming process. Adv Mater 16(2):140–144. doi: 10.1002/adma.200306067 CrossRefGoogle Scholar
  81. 81.
    Brun N, Janot R, Sanchez C, Deleuze H, Gervais C, Morcrette M, Backov R (2010) Preparation of LiBH4@carbon micro-macrocellular foams: tuning hydrogen release through varying microporosity. Energy Environ Sci 3(6):824–830. doi: 10.1039/C000858N CrossRefGoogle Scholar
  82. 82.
    Ungureanu S, Birot M, Laurent G, Deleuze H, Babot O, Julián-López B, Achard MF, Popa MI, Sanchez C, Backov R (2007) One-pot syntheses of the first series of emulsion based hierarchical hybrid organic–inorganic open-cell monoliths possessing tunable functionality (organo—Si(HIPE) series). Chem Mater 19(23):5786–5796. doi: 10.1021/cm701984t CrossRefGoogle Scholar
  83. 83.
    Ungureanu S, Deleuze H, Sanchez C, Popa MI, Backov R (2008) First Pd@organo—Si(HIPE) open-cell hybrid monoliths generation offering cycling heck catalysis reactions. Chem Mater 20(20):6494–6500. doi: 10.1021/cm801525c CrossRefGoogle Scholar
  84. 84.
    Brun N, Julián-López B, Hesemann P, Laurent G, Deleuze H, Sanchez C, Achard MF, Backov R (2008) Eu3+@organo-Si(HIPE) macro-mesocellular hybrid foams generation: syntheses, characterizations, and photonic properties. Chem Mater 20(22):7117–7129. doi: 10.1021/cm8018023 CrossRefGoogle Scholar
  85. 85.
    Brun N, Babeau-Garcia A, Achard MF, Sanchez C, Durand F, Laurent G, Birot M, Deleuze H, Backov R (2011) Enzyme-based biohybrid foams designed for continuous flow heterogeneous catalysis and biodiesel production. Energy Environ Sci 4(8):2840–2844. doi: 10.1039/C1EE01295A CrossRefGoogle Scholar
  86. 86.
    Brun N, Babeau Garcia A, Deleuze H, Achard MF, Sanchez C, Durand F, Oestreicher V, Backov R (2010) Enzyme-based hybrid macroporous foams as highly efficient biocatalysts obtained through integrative chemistry. Chem Mater 22(16):4555–4562. doi: 10.1021/cm100823d CrossRefGoogle Scholar
  87. 87.
    Alauzun JG, Ungureanu S, Brun N, Bernard S, Miele P, Backov R, Sanchez C (2011) Novel monolith-type boron nitride hierarchical foams obtained through integrative chemistry. J Mater Chem 21(36):14025–14030. doi: 10.1039/C1JM12751A CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marco Faustini
    • 1
    • 2
    • 3
  • David Grosso
    • 1
    • 2
    • 3
  • Cédric Boissière
    • 1
    • 2
    • 3
  • Renal Backov
    • 4
  • Clément Sanchez
    • 1
    • 2
    • 3
    Email author
  1. 1.UPMC Univ Paris 06, UMR 7574, Chimie de la Matière Condensée de ParisSorbonne UniversitésParisFrance
  2. 2.UMR 7574, Chimie de la Matière Condensée de Paris, CNRSSorbonne UniversitésParisFrance
  3. 3.UMR 7574, Chimie de la Matière Condensée de Paris, Collège de FranceSorbonne UniversitésParisFrance
  4. 4.Centre de Recherche Paul Pascal, UPR 8641-CNRSUniversité Bordeaux 1PessacFrance

Personalised recommendations