Skip to main content
Log in

Structural, optical and magnetic characterization of ZnO nanorods synthesized using hydrothermal technique at low temperature

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pure ZnO nanorods were grown from aqueous solutions at low temperature (90 °C) by hydrothermal growth technique on sapphire (0001) substrate coated with ZnO thin film. X-ray diffraction results show that these nanorods crystallize in the wurtzite structure having space group P63mc and that they are oriented along the c-axis. Raman and photo-luminescence studies show the presence of oxygen vacancies in the ZnO nanorods. The ZnO nanorods show room temperature ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohno H (1998) Science 281:951

    Article  Google Scholar 

  2. Prinz GA (1998) Science 282:1660

    Article  Google Scholar 

  3. MacDonald AH, Schiffer P, Samarth N (2005) Nat Mater 4:195

    Article  Google Scholar 

  4. Dietl T (2003) Nat Mater 2:646

    Article  Google Scholar 

  5. Ramachandran S, Tiwari A, Narayan J (2004) Appl Phys Lett 84:5255

    Article  Google Scholar 

  6. Snure M, Tiwari A (2009) J Appl Phys 106:043904

    Article  Google Scholar 

  7. Tiwari A, Snure M, Kumar M, Abiade JT (2008) Appl Phys Lett 92:062509

    Article  Google Scholar 

  8. Ueda K, Tabata H, Kawai T (2001) Appl Phys Lett 79:988

    Article  Google Scholar 

  9. Snure M, Kumar D, Tiwari A (2009) Appl Phys Lett 94:012510

    Article  Google Scholar 

  10. Kaspar TC, Droubay T, Heald SM, Nachimuthu P, Wang CM, Shutthanandan V, Johnson CA, Gamelin DR, Chambers CA (2008) New J Phys 10:055010

    Article  Google Scholar 

  11. Lawes G, Risbud AS, Ramirez AP, Seshadri R (2005) Phys Rev B 71:045201

    Article  Google Scholar 

  12. Rao CNR, Deepak FL (2005) J Mater Chem 15:573

    Article  Google Scholar 

  13. Gacic M, Jakob G, Herbort C, Adrian H, Tietze T, Brück S, Goering E (2007) Phys Rev B 75:205206

    Article  Google Scholar 

  14. Sudaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Phys Rev B 74:161306R

    Article  Google Scholar 

  15. Panigrahy B, Aslam M, Misra DS, Ghosh M, Bahadur D (2010) Adv Funct Mater 20:1161

    Article  Google Scholar 

  16. Xing G, Wang D, Yi G, Yang L, Gao M, He M, Yang J, Ding J, Sum TC, Wu T (2010) Appl Phys Lett 96:112511

    Article  Google Scholar 

  17. Kapilashrami M, Xu J, Strom V, Rao KV, Belova L (2009) Appl Phys Lett 95:033104

    Article  Google Scholar 

  18. Banerjee S, Mandal M, Gayathri N, Sardar M (2007) Appl Phys Lett 91:182501

    Article  Google Scholar 

  19. Potzger K, Shengqiang Z, Grenzer J, Helm M, Fassbender J (2008) Appl Phys Lett 92:182504

    Article  Google Scholar 

  20. Hong NH, Sakai J, Poirot N, Brize V (2006) Phys Rev B 73:132404

    Article  Google Scholar 

  21. Choi BK, Chang DH, Yoon YS, Kang SJ (2006) J Mater Sci Mater Electron 17:1011

    Article  Google Scholar 

  22. Vayssieres L (2003) Adv Mater 15:464

    Article  Google Scholar 

  23. Kumar B, Gonga H, Chow SY, Tripathy S, Hua Y (2006) Appl Phys Lett 89:071922

    Article  Google Scholar 

  24. Weber WH, Merlin R (2000) Raman Scattering in Materials Science. Springer, Berlin

    Book  Google Scholar 

  25. Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) Phys Rev B 61:15019

    Google Scholar 

  26. Van de Walle CG (2001) Physica B 899:308

  27. Cusco R, Llado EA (2007) Phys Rev B 75:165202

    Article  Google Scholar 

  28. Bruno P, Chappert C (1991) Phys Rev Lett 67:1602

    Article  Google Scholar 

  29. Zener C (1951) Phys Rev B 82:403

    Article  Google Scholar 

  30. Katayama-Yoshida H, Sato K, Fukushima T, Toyoda M, Kizaki H, Dinh VA, Dederichs PH (2007) Phys Stat Solid A 204:15

    Article  Google Scholar 

  31. Patterson CH (2006) Phys Rev B 74:144432

    Article  Google Scholar 

  32. Hong NH, Sakai J, Huong NT, Poirot N, Ruyter A (2005) Phys Rev B 72:45336

    Article  Google Scholar 

  33. Liu EZ, He Y, Jiang JZ (2008) Appl Phys Lett 93:132506

    Article  Google Scholar 

  34. Zhang CW, Yan SS (2009) J Appl Phys 106:63709

    Article  Google Scholar 

  35. Yan WS, Sun ZH, Liu QH, Li ZR, Pan ZY, Wang J, Wei SQ, Wang D, Zhou YX, Zhang XY (2007) Appl Phys Lett 91:62113

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by University Grants Commission (UGC), Govt. of India, New Delhi for financial assistance through a minor research project [Ref. No. 39-987/2010 (SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Thangavel, R. Structural, optical and magnetic characterization of ZnO nanorods synthesized using hydrothermal technique at low temperature. J Sol-Gel Sci Technol 70, 506–510 (2014). https://doi.org/10.1007/s10971-014-3313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3313-9

Keywords

Navigation