Skip to main content

Advertisement

Log in

Phase transformation and crystalline growth of 4 mol% yttria partially stabilized zirconia

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The phase transformation and crystalline growth of 4 mol% yttria partially stabilized zirconia (4Y-PSZ) precursor powders have been investigated using the coprecipitation route, using zirconium oxide chloride octahydrate (ZrOCl2·8H2O) and yttrium nitrate (Y(NO3)3·6H2O) as the initial materials. Differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED), and high resolution TEM (HRTEM) were utilized to characterize the behavior of phase transformation and crystalline growth of the 4Y-PSZ precursor powders after calcined. Tetragonal ZrO2 crystallization occurred at about 718.2 K. The activation energy of tetragonal ZrO2 crystallization was 227.0 ± 17.4 kJ/mol, obtained by a non-isothermal method. The growth morphology parameter (n) and growth mechanism index were close to 2.0, showing that tetragonal ZrO2 had a plate-like morphology. The crystalline size of tetragonal ZrO2 increased from 7.9 to 27.6 nm when the calcination temperature was increased from 973 to 1,273 K. The activation energies of tetragonal ZrO2 growth were 14.97 ± 0.33 and 84.46 ± 6.65 kJ/mol when precursor powders after calcined from 723–973 and 973–1,273 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Subbarao EC (1981) In: Heuer AH, Hobbs LW (eds) Advances in ceramics, vol 3. The American Ceramic Society, Columbus, p 1

    Google Scholar 

  2. Pascual C, Duran P (1983) J Am Ceram Soc 66:23–27

    Article  Google Scholar 

  3. Heuer AH (1987) Am Ceram Soc 70:689–698

    Article  Google Scholar 

  4. Yang B, Lange-Jansen HC, Scharnberg M, Wolfart S, Ludwig K, Adelung R, Kern M (2008) Dent Mater 24:508–513

    Article  Google Scholar 

  5. Kosmač T, Oblak Č, Marion L (2008) J Eur Ceram Soc 28:1085–1090

    Article  Google Scholar 

  6. Piconi C, Maccauro G (1999) Biomaterials 20:1–25

    Article  Google Scholar 

  7. Deville S, Chevalier J, Fantozzi G, Bartolome JF, Reguena J, Moya JS, Torrecillas R, Diag LA (2003) J Eur Ceram Soc 23:2975–2982

    Article  Google Scholar 

  8. Hannink RHJ, Kelly PM, Muddle BC (2000) J Am Ceram Soc 83:461–487

    Article  Google Scholar 

  9. Álvarez MR, Landa AR, Otero-Diaz LC, Terralvo MJ (1998) J Am Ceram Soc 18:1201–1210

    Article  Google Scholar 

  10. Wu NL, Wu TE (2000) J Am Ceram Soc 83:3225–3227

    Article  Google Scholar 

  11. Vasylkiv O, Sakka Y (2001) J Am Ceram Soc 84:2489–2494

    Article  Google Scholar 

  12. Li W, Gao L (2001) Ceram Int 27:543–546

    Article  Google Scholar 

  13. Viazzi C, Bonino JP, Ansart F, Barnabé A (2008) J Alloys Compds 452:377–383

    Article  Google Scholar 

  14. Hsu YW, Yang KH, Chang KM, Yeh SW, Wang MC (2011) J Alloys Compds 509:6864–6870

    Article  Google Scholar 

  15. Shukla S, Stal S, Vij R, Bandyopadhyay S (2003) Nano Lett 3:397–401

    Article  Google Scholar 

  16. Chen SG, Yin YS, Wang DP, Li J (2004) J Cryst Growth 267:100–109

    Article  Google Scholar 

  17. Lee HE, Du JK, Sie YY, Wang CH, Wu JH, Wang CL, Hwang WS, Huang HH, Li WL, Wang MC (2011) J Non-Crystal Solids 357:2103–2108

    Article  Google Scholar 

  18. Kuo CW, Shen YH, Wen SB, Lee HE, Hung IM, Wang MC (2011) Ceram Int 37:341–347

    Article  Google Scholar 

  19. Wang CH, Wang MC, Du JK, Sie YY, Hsi CH, Lee HE (2013) Ceram Int 39:5165–5174

    Article  Google Scholar 

  20. Hsu YW, Yang KH, Yen SW, Wang MC (2013) J Alloys Compds 555:82–87

    Article  Google Scholar 

  21. Cullity BD (1967) Elements of X-ray diffraction. Addison-Wesley, Reading, p 388

    Google Scholar 

  22. Whitney ED (1970) J Am Ceram Soc 53:697–698

    Article  Google Scholar 

  23. Lim BP, Wang J, Ng CC, Chen CH, Gan LM (1998) Ceram Int 24:205–209

    Article  Google Scholar 

  24. Huang HJ, Wang MC (2013) Ceram Int 39:1729–1739

    Article  Google Scholar 

  25. Whitney ED (1965) Faraday Soc 6:1991–2000

    Article  Google Scholar 

  26. Corman GS, Stubican VS (1985) J Am Ceram Soc 68:174–181

    Article  Google Scholar 

  27. Marotta A, Buri A (1978) Thermochinica Acta 25:155–160

    Article  Google Scholar 

  28. Ramanathan S, Nuraleedharan RV, Roy SK, Nayar PKK (1995) J Am Ceram Soc 78:429–432

    Article  Google Scholar 

  29. Wang MC, Hung HJ (2013) Thermochim Acta 567:93–99

    Article  Google Scholar 

  30. Matusita K, Sakka S, Matsui Y (1975) J Mater Sci 10:961–966

    Article  Google Scholar 

  31. Matusita K, Sakka S (1979) Thermochim Acta 33:351–354

    Article  Google Scholar 

  32. Chen YF, Wang MC, Hon MH (2004) J Eur Ceram Soc 24:2389–2397

    Article  Google Scholar 

  33. Hsi CS, Wang MC (1998) J Mater Res 13:2655–2661

    Article  Google Scholar 

  34. Garvie RC, Hannink RH, Pascoe RT (1975) Nature 258:703–704

    Article  Google Scholar 

  35. Garvie RC (1978) J Phys Chem 76:1497–1502

    Google Scholar 

  36. Li G, Li L, Boerio-Goates J, Woodfield BF (2005) J Am Chem Soc 127:8666–8695

    Google Scholar 

  37. Lai JKL, Shek CH, Lin GM (2003) Scripta Mater 49:441–446

    Article  Google Scholar 

  38. Chraska T, King AH, Berndt CC (2000) Mater Sci Eng A 286:169–178

    Article  Google Scholar 

  39. VanValzah JR, Eaton HE (1991) Surf Coat Technol 46:289–300

    Article  Google Scholar 

  40. Wang MC (1994) J Mater Res 9:2290–2297

    Article  Google Scholar 

  41. Ko HH, Yang G, Cheng HZ, Wang MC, Zhao X (2014) Ceram Int 40:4055–4064

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Ministry of Economic Affairs, Taiwan, Republic of China, under Grant 102-EC-17-A-08-S1-142. The authors and also deeply thank Prof. M.H. Hon and Mr. S.Y. Yau for offering valuable advice and suggestions on the experiments and analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Lin Yen or Moo-Chin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CL., Hwang, WS., Chu, HL. et al. Phase transformation and crystalline growth of 4 mol% yttria partially stabilized zirconia. J Sol-Gel Sci Technol 70, 428–440 (2014). https://doi.org/10.1007/s10971-014-3303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3303-y

Keywords

Navigation