Skip to main content

Preparation of CuCrO2 nanoparticles with narrow size distribution by sol–gel method

Abstract

Copper chromium oxide (CuCrO2) nanoparticles were synthesized by sol–gel method. The effect of annealing temperature, duration of heat treatment and metallic ion concentration in precursor solution on the structural properties of the nanoparticles was investigated. The delafossite structure of CuCrO2 powder was confirmed by X-ray diffractometer. It was found that the crystallite sizes as well as the size of the nanoparticles increased with annealing temperature and duration of heat treatment but decreased with metallic ion concentration. Nanoparticles’ size was obtained using particle size analyzer. The synthesized CuCrO2 nanoparticles with 0.7 M metallic ion concentration have the lowest crystallite and particle sizes with a narrow size distribution in the range of 13.5–15.6 nm. In the presence of this metallic ion concentration, we could also produce single crystal CuCrO2 nanoparticles. Moreover, the CuCrO2 nanoparticles exhibit a large optical band gap that increases with metallic ion concentration. The optical band gap of the nanoparticles fabricated with 0.7 M metallic ion concentration in precursor solution is about 3.99 eV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Sonawane BK, Bhole MP, Patil DS (2009) Opt Quant Electron 41:17

    Article  Google Scholar 

  2. 2.

    Lim SH, Desu S, Rastogi AC (2008) J Phys Chem Solids 69:2047

    Article  Google Scholar 

  3. 3.

    Oskam G, Peet Poot F (2006) J Sol–Gel Sci Technol 37:157

    Google Scholar 

  4. 4.

    Ikono R, Akwalia PR, Bambang W, Sukarto A, Rochman NT (2012) IJET 12:5

    Google Scholar 

  5. 5.

    Rai AK, Anh LT, Gim J, Mathew V, Kang J, Paul BJ, Song J, Kim J (2013) Electrochim Acta 90:112

    Article  Google Scholar 

  6. 6.

    Babu KS, Reddy AR, Sujatha C, Reddy KVG, Mallika AN (2013) Mater Lett 110:10

    Article  Google Scholar 

  7. 7.

    Wang YD, Ma CL, Sun XD, Li HD (2002) Nanotechnology 13:565

    Article  Google Scholar 

  8. 8.

    Krysa J, Keppert M, Jirkovsky JI, Stengl V, Subrt D (2004) J Mater Chem Phys 86:333

    Article  Google Scholar 

  9. 9.

    Wang Y, Gu Y, Wang T, Shi W (2011) J Alloys Compd 509:5897

    Article  Google Scholar 

  10. 10.

    Tate J, Jayaraj MK, Draeseke AD, Ulbrich T, Sleight AW, Vanaja KA, Nagarajan R, Wager JF, Hoffman RL (2002) Thin Solid Films 411:119

    Article  Google Scholar 

  11. 11.

    Lin YJ, Luo J, Hung HC (2013) Appl Phys Lett 102:193511

    Article  Google Scholar 

  12. 12.

    Tonooka K, Kikuchi N (2006) Thin Solid Films 515:2415

    Article  Google Scholar 

  13. 13.

    Banerjee AN, Chattopadhyay KK (2005) Prog Cryst Growth Charact Mater 50:52

    Article  Google Scholar 

  14. 14.

    Xiong D, Xu Z, Zeng X, Zhang W, Chen W, Xu X, Wang M, Cheng YB (2012) J Mater Chem 22:24760

    Article  Google Scholar 

  15. 15.

    Dupont N, Kaddouri A, Gelin P (2011) J Sol–Gel Sci Technol 58:302

    Article  Google Scholar 

  16. 16.

    Miclau M, Ursu D, Kumar S, Grozescu I (2012) J Nanopart Res 14:1110

    Article  Google Scholar 

  17. 17.

    Ahmad A, Jagadale T, Dhas V, Khan S, Patil S, Pasricha R, Ravi V, Ogale S (2007) Adv Mater 19:3295

    Article  Google Scholar 

  18. 18.

    Murali G, Reddy DA, Poornaprakash B, Vijayalakshmi RP, Rao NM (2011) Optoelectron Adv Mat 5:928

    Google Scholar 

  19. 19.

    Ebrahimizadeh Abrishami M, Kompany A, Hosseini SM, Ghajari Bardar N (2012) J Sol–Gel Sci Technol 62:153

    Google Scholar 

  20. 20.

    Gotzendorfer S, Bywalez R, Lobmann P (2009) J Sol–Gel Sci Technol 52:113

    Article  Google Scholar 

  21. 21.

    Mathew JP, Varghese G, Mathew J (2012) Chin Phys B 21:078104

    Article  Google Scholar 

  22. 22.

    Seetawan U, Jugsujind S, Seetawan T, Euvananont C, Junin C, Thanachayanont C, Chainaronk P, Amornkitbamrung V (2011) Solid State Sci 13:1599

    Article  Google Scholar 

  23. 23.

    Oprea C, Ciupina V, Prodan G (2008) Rom Journ Phys 53:223

    Google Scholar 

  24. 24.

    Gottstein G, Shvindlerman LS (1993) Acta Metall Mater 41:3267

    Article  Google Scholar 

  25. 25.

    Ting JM, Lin RY (1994) J Mater Sci 29:1867

    Article  Google Scholar 

  26. 26.

    Maciel AP, Lisboa-Filho PN, Leite ER, Paiva-Santos CO, Schreiner WH, Maniette Y, Longo E (2003) J Eur Ceram Soc 23:707

    Article  Google Scholar 

  27. 27.

    Hallberg H (2011) Metals 1:16

    Article  Google Scholar 

  28. 28.

    Jiang HF, Zhu XB, Lei HC, Li G, Yang ZR, Song WH, Dai JM, Sun YP, Fu YK (2011) J Alloys Compd 509:1768

    Article  Google Scholar 

  29. 29.

    Dwivedi DK, Kumar V, Dubey M, Pathak HP (2011) Chalcogenide Lett 8:521

    Google Scholar 

  30. 30.

    Shenghong Y, Ying L, Yueli Z, Dang M (2010) Bull Mater Sci 33:209

    Article  Google Scholar 

  31. 31.

    Goswami N, Sharma DK (2010) Phys E 42:1675

    Article  Google Scholar 

  32. 32.

    Kayanuma Y (1988) Phys Rev B 38:9797

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Ghanaatshoar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asemi, M., Ghanaatshoar, M. Preparation of CuCrO2 nanoparticles with narrow size distribution by sol–gel method. J Sol-Gel Sci Technol 70, 416–421 (2014). https://doi.org/10.1007/s10971-014-3298-4

Download citation

Keywords

  • CuCrO2 nanoparticle
  • Particle size
  • Annealing
  • Optical band gap
  • Sol–gel method