Skip to main content
Log in

Analysis of structural and electrical properties of Ni2+:Zn2SiO4 ceramic powders by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Present paper reports on the synthesis and electrical properties of Ni2+:Zn2SiO4 (Zn2−xSiO4 = xNi2+, x = 0.0, 0.25, 0.50 and 0.75 mol%) ceramic powders by a conventional sol–gel method. The structural details of Ni2+:Zn2SiO4 ceramic powders have been investigated from the measurement of XRD, FT-IR, Raman spectral profiles and SEM images. The results reveal that these ceramic powders are all in nanometer sized-grains of spherical forms with willemite structures. The XRD and EDAX results have thus corroborated the successful doping of Ni2+ ions into the Zn2SiO4 matrix. The dielectric real (ε′), imaginary (ε″) parts, loss tangent (tan δ) and AC conductivity (σac) properties as the function of frequency have been carried out and those are strongly dependent on Ni concentration and this behaviours have been explained on the basis of Maxwell–Wagner type of interfacial space charge polarization. Complex impedance analysis data shows only one semicircle corresponding to the grain boundary volume and thus suggesting that the conduction occurrence through grain boundary volume in Ni2+ doped samples and it has been explained using the Cole–Cole expression.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. MPeko JC, Spavieri DL Jr, Da Silva CL, Fortulan CA, de Souza DPF, De Souza MF (2003) Solid State Ion 156:59–69

    Article  Google Scholar 

  2. Canbay CA, Aydogdu A (2009) Turk J Sci Tech 4:121–216

    Google Scholar 

  3. Batoo KM, Kumar S, Lee CG, Alimuddin (2009) Curr Appl Phys 9:826–832

    Article  Google Scholar 

  4. Sunu SS, Prabhu E, Jayraman V, Gnanasekar KI, Seshagiri TS, Ganasekaran T (2004) Sens Actutators B 101:161–174

    Article  Google Scholar 

  5. Miki T, Ogawa T, Isobe T (2004) J Sol–Gel Sci Technol 31:73–77

    Article  Google Scholar 

  6. Zhang HX, Kam CH, Zhou Y, Han XQ, Buddhudu S, Lam YL, Chan CY (2000) Thin Solid Films 370:50–53

    Article  Google Scholar 

  7. Verma A, Goel TC, Mendiratta RG, Alam MI (1999) Mater Sci Eng B 60:156–162

    Article  Google Scholar 

  8. Gandhi Y, Krishna Mohan N, Veeraiah N (2011) J Non-Cryst Solids 357:1193–1202

    Article  Google Scholar 

  9. Li T, Qiu H, Ping W (2007) Thin Solid Films 515:3905–3909

    Article  Google Scholar 

  10. Wu B, Qiu J, Peng M, Ren J, Jiang X, Zhu C (2007) Mater Res Bull 42:762–768

    Article  Google Scholar 

  11. Elkestawy MA (2010) J Alloys Compd 492:616–620

    Article  Google Scholar 

  12. Saafan SA, Assar ST (2012) J Magn Magn Mater 324:2989–3001

    Article  Google Scholar 

  13. Mazen SA, Mansour SF, Dhahri E, Zaki HM, Elmosalami TA (2009) J Alloys Compd 470:294–300

    Article  Google Scholar 

  14. Sakka S, Kozuka H (1999) Hand book of sol–gel Science and technology processing, characterization and applications vol 1. Sol–gel processing. Kluwer Academic Publishers, New York

    Google Scholar 

  15. Suryanarayana C, Grant Norton M (1998) X-ray diffraction: a practical approach. Plenum Press, New York

    Book  Google Scholar 

  16. Cullity BD (1978) Elements of X-rays diffraction, 2nd edn. Wesley, Philippines

    Google Scholar 

  17. Elahi A, Ahmad M, Ali M, Rana MU (2013) Ceram Int 39:983–990

    Article  Google Scholar 

  18. Nasir S, Anis-ur-Rehman M, Malik MA (2011) Phys Scr 83:025602–025607

    Article  Google Scholar 

  19. Goswami M, Deshpande SK, Kumar R, Kothiyal GP (2010) J Phys Chem Solids 71:739–744

    Article  Google Scholar 

  20. Chandra Babu B, Naresh V, Prakash BJ, Buddhudu S (2011) Ferr Lett Sec 38:114–127

    Article  Google Scholar 

  21. Li C, Bando Y, Dierre B, Sekiguchi T, Huang Y, Lin J, Golberg D (2010) Nanoscale Res Lett 5:773–780

    Article  Google Scholar 

  22. Naryan R, Tirupati RB, Das Bk, Jain GC (1983) J Mater Sci 18:1583

    Article  Google Scholar 

  23. Patra A, Baker Gary A, Baker Sheila N (2004) Opt Mater 27:15–20

    Article  Google Scholar 

  24. Lin CC, Shen P (1994) J Non-Cryst Solids 171:281–289

    Article  Google Scholar 

  25. LewisIan R, EdwardsHowell GM (2011) Hand book of Raman spectroscopy from the research laboratory to the process line. CRC Press Taylor and Francis Group, New York

    Google Scholar 

  26. Wagner K (1913) Ann Phys 40:817

    Article  Google Scholar 

  27. Maxwell JC (1973) Electricity and magnetism. Oxford University Press, Oxford 1:328

    Google Scholar 

  28. Shaik MA, Bellard SS, Chougule BK (1996) J Magn Magn Mater 152:391

    Article  Google Scholar 

  29. Kilic C, Zunger A (2002) Phys Rev Lett 88:095501–095504

    Article  Google Scholar 

  30. Rezlescu N, Rezelescu E (1974) Phys Status Solidi A 23:575–582

    Article  Google Scholar 

  31. Kumar M, Yadav KL (2007) J Phys chem Solid 68:1791–1795

    Google Scholar 

  32. Azam A, Ahmed AS, Ansari, Muhamed Shafeeq M, Naqvi AH (2010) J Alloys Compd 506:237–242

    Article  Google Scholar 

  33. Zaki HM (2005) Phys B 363:232–244

    Google Scholar 

  34. Batoo KM (2011) J Phys Chem Solids 72:1400–1407

    Article  Google Scholar 

  35. Groothues H, Kremer F, Schouten PG, Warman JM (1995) Adv Mater 7:283–286

    Article  Google Scholar 

  36. Inada H (1997) J Mater Sci 32:1867–1872

    Article  Google Scholar 

  37. Kotnala RK, Gupta R, Shah J, Abdullah Dar M (2012) J Sol–Gel Sci Technol. doi:10.1007/s10971-012-2841-4

    Google Scholar 

  38. Doh SG, Kim EB, Lee BH, Oh JH (2004) J Magn Magn Mater 2238:272–276

    Google Scholar 

  39. Kumar NS, Narayaasamy A, Shinoda K, Chinnasamy CN, Jeyadevan B, Greneche JM (2007) J Appl Phys 102:013916

    Article  Google Scholar 

Download references

Acknowledgments

One of us (B.C.B) would like to thank the UGC, New Delhi for the award of a Rajiv Gandhi National Fellowship (RGNF) to him to carry out the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Chandra Babu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra Babu, B., Buddhudu, S. Analysis of structural and electrical properties of Ni2+:Zn2SiO4 ceramic powders by sol–gel method. J Sol-Gel Sci Technol 70, 405–415 (2014). https://doi.org/10.1007/s10971-014-3296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3296-6

Keywords

Navigation