Skip to main content
Log in

Multifunctional superhydrophobic/oleophobic and flame-retardant cellulose fibres with improved ice-releasing properties and passive antibacterial activity prepared via the sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this research, a two-component sol–gel inorganic–organic hybrid coating was prepared on a cotton fibre surface. An equimolar sol mixture of the precursors 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide (SiP) was applied to cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and coated cotton fibres were characterised using scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight-secondary ion mass spectrometry. The functional properties of the coated cotton fabric samples were investigated using static contact angle measurements with water and n-hexadecane, the ice-releasing test, antibacterial testing against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, thermogravimetric analysis in an air atmosphere, and vertical flammability tests. The results reveal the formation of a nanocomposite two-component inorganic–organic hybrid polymer network that is homogenously distributed over the cotton fibre surface. The presence of the SiP component in the two-component inorganic–organic hybrid coating did not hinder the functional properties imparted by the presence of the SiF component and vice versa, illustrating their compatibility. The cooperative action of the SiF and SiP components in the two-component coating provided the cotton fabric with exceptional multifunctionality, including simultaneous superhydrophobicity and high oleophobicity, passive antibacterial activity, and improved thermo-oxidative stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mahltig B, Böttcher H (2003) Modified silica sol coatings for water-repellent textiles. J Sol–Gel Sci Technol 27:43–52

    Article  Google Scholar 

  2. Mahltig B, Fischer A (2010) Inorganic/organic polymer coatings for textiles to realize water repellent and antimicrobial properties—a study with respect to textile comfort. J Polym Sci B Polym Phys 48:1562–1568

    Article  Google Scholar 

  3. Simončič B, Tomšič B, Černe L, Orel B, Jerman I, Kovač J, Žerjav M, Simončič A (2012) Multifunctional water and oil repellent and antimicrobial properties of finished cotton: influence of sol–gel finishing procedure. J Sol–Gel Sci Technol 61:340–354

    Article  Google Scholar 

  4. Brinker JC, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  5. Castellano M, Gandini A, Fabbri P, Belgacem MN (2004) Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci 273:505–511

    Article  Google Scholar 

  6. Salon MCB, Gerbaud G, Abdelmouleh M, Bruzzese C, Boufi S, Belgacem MN (2007) Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn Reson Chem 45:473–483

    Article  Google Scholar 

  7. Vasiljević J, Gorjanc M, Tomšič B, Orel B, Jerman I, Mozetič M, Vesel A, Simončič B (2013) The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose 20:277–289

    Article  Google Scholar 

  8. Vilčnik A, Jerman I, Šurca Vuk A, Koželj M, Orel B, Tomšič B, Simončič B, Kovač J (2009) Structural properties and antibacterial effects of hydrophobic and oleophobic sol–gel coatings for cotton fabrics. Langmuir 25:5869–5880

    Article  Google Scholar 

  9. Mahltig B, Haufe H, Böttcher H (2005) Functionalisation of textiles by inorganic sol–gel coatings. J Mater Chem 15:4385–4398

    Article  Google Scholar 

  10. Mahltig B, Audenaert F, Böttcher H (2005) Hydrophobic silica sol coatings on textiles—the influence of solvent and sol concentration. J Sol–Gel Sci Technol 34:103–109

    Article  Google Scholar 

  11. Periolatto M, Ferrero F, Montarsolo A, Mossotti R (2013) Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose 20:355–364

    Article  Google Scholar 

  12. Yin Y, Wang C (2012) Organic–inorganic hybrid silica film coated for improving resistance to capsicum oil on natural substances through sol–gel route. J Sol–Gel Sci Technol 64:743–749

    Article  Google Scholar 

  13. Basu BJ, Kumar VD, Anandan C (2012) Surface studies on superhydrophobic and oleophobic polydimethylsiloxane–silica nanocomposite coating system. Appl Surf Sci 261:807–814

    Article  Google Scholar 

  14. Lionti K, Toury B, Boissière C, Benayoun S, Miele P (2013) Hybrid silica coatings on polycarbonate: enhanced properties. J Sol–Gel Sci Technol 65:52–60

    Article  Google Scholar 

  15. Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38:644–652

    Article  Google Scholar 

  16. Tuteja A, Choi W, McKinley GH, Cohen RE, Rubner MF (2008) Design parameters for superhydrophobicity and superoleophobicity. MRS Bull 33:752–758

    Article  Google Scholar 

  17. Dalvi VH, Rossky PJ (2010) Molecular origins of fluorocarbon hydrophobicity. Proc Natl Acad Sci USA 107:13603–13607

    Article  Google Scholar 

  18. Mino N, Ogawa K, Minoda T, Takatsuka M, Sha S, Moriizumi T (1993) Thin film characteristics of fluorine-substituted monolayers prepared by chemical adsorption from solution. Thin Solid Films 230:209–216

    Article  Google Scholar 

  19. Pintault B, Ayral A (2009) Hydrophobic inorganic membranes for water/gas separation. J Porous Mater 16:73–79

    Article  Google Scholar 

  20. Houde M, De Silva AO, Muir DCG, Letcher RJ (2011) Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ Sci Technol 45:7962–7973

    Article  Google Scholar 

  21. Lau C, Anitole K, Hodes K, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  Google Scholar 

  22. Martin JW, Mabury SA, Solomon KR, Muir DCG (2003) Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 22:196–204

    Article  Google Scholar 

  23. Renner R (2001) Growing concern over perfluorinated chemicals. Environ Sci Technol 35:154A

    Article  Google Scholar 

  24. Tomšič B, Simončič B, Orel B, Černe L, Forte Tavčer P, Zorko M, Jerman I, Vilčnik A, Kovač J (2008) Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol–Gel Sci Technol 47:44–57

    Article  Google Scholar 

  25. Farhadi S, Farzaneh M, Kulinich SA (2011) Anti-icing performance of superhydrophobic surfaces. Appl Surf Sci 257:6264–6269

    Article  Google Scholar 

  26. Hejazi V, Sobolev K, Nosonovsky M (2013) From superhydrophobicity to icephobicity: forces and interaction analysis. Sci Rep 3:2194

    Article  Google Scholar 

  27. Meuler AJ, Smith JD, Varanasi KK, Mabry JM, McKinley GH, Cohen RE (2010) Relationships between water wettability and ice adhesion. ACS Appl Mater Interfaces 2:3100–3110

    Article  Google Scholar 

  28. Zou M, Beckford S, Wei R, Ellis C, Hatton G, Miller MA (2011) Effects of surface roughness and energy on ice adhesion strength. Appl Surf Sci 257:3786–3792

    Article  Google Scholar 

  29. Alongi J, Colleoni C, Malucelli G, Rosace G (2012) Hybrid phosphorus-doped silica architectures derived from a multistep sol–gel process for improving thermal stability and flame retardancy of cotton fabrics. Polym Degrad Stab 97:1334–1344

    Article  Google Scholar 

  30. Alongi J, Colleoni C, Rosace G, Malucelli G (2013) The role of pre-hydrolysis on multi step sol–gel processes for enhancing the flame retardancy of cotton. Cellulose 20:525–535

    Article  Google Scholar 

  31. Hu S, Hu Y, Song L, Lu H (2011) Effect of modified organic–inorganic hybrid materials on thermal properties of cotton fabrics. J Therm Anal Calorim 103:423–427

    Article  Google Scholar 

  32. Hu S, Hu Y, Song L (2012) The potential of functionalized organic–inorganic hybrid materials for influencing the thermal stability of cotton fabrics. Sci Adv Mater 4:985–993

    Article  Google Scholar 

  33. Vasiljević J, Hadžić S, Jerman I, Černe L, Tomšič B, Medved J, Godec M, Orel B, Simončič B (2013) Study of flame-retardant finishing of cellulose fibres: organic–inorganic hybrid versus conventional organophosphonate. Polym Degrad Stab. doi:10.1016/j.polymdegradstab.2013.09.020

  34. Yang Z, Fei B, Wang X, Xin JH (2012) A novel halogen-free and formaldehyde-free flame retardant for cotton fabrics. Fire Mater 36:31–39

    Article  Google Scholar 

  35. Bonnet J, Bounor-Legaré V, Boisson F, Melis F, Camino G, Cassagnau P (2012) Phosphorus based organic–inorganic hybrid materials prepared by reactive processing for EVA fire retardancy. Polym Degrad Stab 97:513–522

    Article  Google Scholar 

  36. Qian X, Song L, Hu Y, Yuen RKK (2012) Preparation and thermal properties of novel organic/inorganic network hybrid materials containing silicon and phosphate. J Polym Res 19:9890

    Article  Google Scholar 

  37. Tang Z, Li Y, Zhang YJ, Jiang P (2012) Oligomeric siloxane containing triphenylphosphonium phosphate as a novel flame retardant for polycarbonate. Polym Degrad Stab 97:638–644

    Article  Google Scholar 

  38. Horrocks AR, Price D (2001) Fire retardant materials. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  39. Horrocks AR (1983) An introduction to the burning behaviour of cellulosic fibres. J Soc Dye Colour 99:191–197

    Article  Google Scholar 

  40. Zhu P, Sui S, Wang B, Sun K, Sun G (2004) A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J Anal Appl Pyrolysis 71:645–655

    Article  Google Scholar 

  41. Kandola BK, Horrocks AR, Price D, Coleman GV (1996) Flame-retardant treatments of cellulose and their influence on the mechanism of cellulose pyrolysis. J Macromol Sci Polym Rev 36:721–794

    Article  Google Scholar 

  42. Gaan S, Sun G (2007) Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym Degrad Stab 92:968–974

    Article  Google Scholar 

  43. Horrocks AR, Price D, Akalin M (1996) FTIR analysis of gases evolved from cotton and flame retarded cotton fabrics pyrolysed in air. Polym Degrad Stab 52:205–213

    Article  Google Scholar 

  44. Gaan S, Sun G, Hutches K, Engelhard MH (2008) Effect of nitrogen additives on flame retardant action of tributyl phosphate: phosphorus-nitrogen synergism. Polym Degrad Stab 93:99–108

    Article  Google Scholar 

  45. Colleoni C, Donelli I, Freddi G, Guido E, Migani V, Rosace G (2013) A novel sol–gel multi-layer approach for cotton fabric finishing by tetraethoxysilane precursor. Surf Coat Technol 235:192–203

    Article  Google Scholar 

  46. Alongi J, Malucelli G (2013) Heat and moisture transfer in sol–gel treated cotton fabrics. J Therm Anal Calorim 111:459–465

    Article  Google Scholar 

  47. Wu W, Yang CQ (2007) Comparison of different reactive organophosphorus flame retardant agents for cotton. Part II: fabric flame resistant performance and physical properties. Polym Degrad Stab 92:363–369

    Article  Google Scholar 

  48. Simončič B, Hadžić S, Vasiljević J, Černe L, Tomšič B, Jerman I, Orel B, Medved J (2013) Tailoring of multifunctional cellulose fibres with “lotus effect” and flame retardant properties. Cellulose. doi:10.1007/s10570-013-0103-4

  49. Černe L, Hadžić S, Simončič B (2013) Determination of optimal concentrations of agents for preparation of multifunctional water and oil repellent and flame retardant finish. Tekstilec 56:13–21

    Google Scholar 

  50. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392

    Article  Google Scholar 

  51. Hd’A Heck, Casanova M (2004) The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity. Regul Toxicol Pharmacol 40:92–106

    Article  Google Scholar 

  52. Lam Y-L, Kan C-W, Yuen C-WM (2012) Developments in functional finishing of cotton fibres–wrinkle-resistant, flame-retardant and antimicrobial treatments. Text Prog 44:175–249

    Article  Google Scholar 

  53. Weil ED, Levchik SV (2008) Flame retardants in commercial use or development for textiles. J Fire Sci 26:243–281

    Article  Google Scholar 

  54. Alongi J, Malucelli G (2012) State of the art and perspectives on sol–gel derived hybrid architectures for flame retardancy of textiles. J Mater Chem 22:21805–21809

    Article  Google Scholar 

  55. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., Eden Prairie

    Google Scholar 

  56. Lee HJ (2012) Design and development of anti-icing textile surfaces. J Mater Sci 47:5114–5120

    Article  Google Scholar 

  57. Hulleman SHD, van Hazendonk JM, van Dam JEG (1994) Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopy. Carbohydr Res 261:163–172

    Article  Google Scholar 

  58. Tomšič B, Simončič B, Orel B, Vilčnik A, Spreizer H (2007) Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydr Polym 69:478–488

    Article  Google Scholar 

  59. Lenk TJ, Hallmark VM, Hoffmann CL, Rabolt JF, Castner DG, Erdelen C, Ringsdorf H (1994) Structural investigation of molecular organization in self-assembled monolayers of a semifluorinated amidethiol. Langmuir 10:4610–4617

    Article  Google Scholar 

  60. Rabolt JF, Russell TP, Twieg RJ (1984) Structural studies of semifluorinated n-alkanes. 1. Synthesis and characterization of F(CF2)n(CH2)mH in the solid state. Macromolecules 17:2786–279463

    Article  Google Scholar 

  61. Socrates G (2001) Infrared and raman characteristic group frequencies: tables and charts. Wiley, Chichester

    Google Scholar 

  62. Orel B, Jese R, Vilčnik A, Štangar UL (2005) Hydrolysis and solvolysis of methyltriethoxysilane catalyzed with HCl or trifluoroacetic acid: IR spectroscopic and surface energy studies. J Sol–Gel Sci Technol 34:251–265

    Article  Google Scholar 

  63. Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16

    Article  Google Scholar 

  64. Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420

    Article  Google Scholar 

  65. Berman ESF, Kulp KS, Knize MG, Wu L, Nelson EJ, Nelson DO, Wu KJ (2006) Distinguishing monosaccharide stereo- and structural isomers with TOF-SIMS and multivariate statistical analysis. Anal Chem 78:6497–6503

    Article  Google Scholar 

  66. Deslandes Y, Pleizier G, Poiré E, Sapieha S, Wertheimer MR, Sacher E (1998) The surface modification of pure cellulose paper induced by low-pressure nitrogen plasma treatment. Plasmas Polym 3:61–76

    Article  Google Scholar 

  67. Goacher RE, Jeremic D, Master ER (2011) Expanding the library of secondary ions that distinguish lignin and polysaccharides in time-of-flight secondary ion mass spectrometry analysis of wood. Anal Chem 83:804–812

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency (Programme P2-0213 and a Grant for the Ph.D. student J. V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Simončič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiljević, J., Tomšič, B., Jerman, I. et al. Multifunctional superhydrophobic/oleophobic and flame-retardant cellulose fibres with improved ice-releasing properties and passive antibacterial activity prepared via the sol–gel method. J Sol-Gel Sci Technol 70, 385–399 (2014). https://doi.org/10.1007/s10971-014-3294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3294-8

Keywords

Navigation