Skip to main content
Log in

Synthesis and luminescence properties of Eu(III)-doped silica nanorods based on the sol–gel process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Uniform Eu3+-doped SiO2 nanorods were synthesized through a simple sol–gel method using cetyltrimethylammonium bromide (CTAB) as surfactant template and tetraethylorthosilicate as silicon source. X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectrum, scanning electron microscope (SEM), transmission electron microscopy, and photoluminescence spectra were employed to characterize the products in detail. The nanorods have good uniformity and their diameters and lengths are in the range of 200–300 and 500–700 nm through the SEM images, respectively. The formation of the nanorods was studied by taking SEM images after different aging time. The experimental results indicate that CTAB plays a crucial role in the formation of the silica nanorods. The luminescence of Eu3+-doped SiO2 nanorods is dominated by red-emission around 612 nm due to intra-atomic 4f → 4f (5D0 → 7F2) transition of Eu3+ ions. Furthermore, the effect of doping concentrations of Eu3+ ions on the luminescence was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ge S, Liu W, Ge L, Yan M, Yan J, Huang J, Yu J (2013) In situ assembly of porous Au-paper electrode and functionalization of magnetic silica nanoparticles with HRP via click chemistry for microcystin-LR immunoassay. Biosens Bioelectron 49:111–117. doi:10.1016/j.bios.2013.05.010

    Article  Google Scholar 

  2. Dong WJ, Li WJ, Yu KF, Krishna K, Song LZ, Wang XF, Wang ZC, Coppens MO, Feng SH (2003) Synthesis of silica nanotubes from kaolin clay. Chem Commun 11:1302–1303. doi:10.1039/b300335c

    Article  Google Scholar 

  3. Su X, Zhao J, Zhao X, Guo Y, Zhu Y, Wang Z (2008) A facile synthesis of Cu2O/SiO2 and Cu/SiO2 core–shell octahedral nanocomposites. Nanotechnology 19(36):365610

    Article  Google Scholar 

  4. Satishkumar B, Doorn SK, Baker GA, Dattelbaum AM (2008) Fluorescent single walled carbon nanotube/silica composite materials. ACS Nano 2(11):2283–2290

    Article  Google Scholar 

  5. Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL (2008) Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 8(1):302–306

    Article  Google Scholar 

  6. Sun B, Sirringhaus H (2006) Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors. J Am Chem Soc 128(50):16231–16237

    Article  Google Scholar 

  7. Kim S, Kim SK, Park S (2009) Bimetallic gold-silver nanorods produce multiple surface plasmon bands. J Am Chem Soc 131(24):8380–8381. doi:10.1021/ja903093t

    Article  Google Scholar 

  8. Fuhrer M, Kim B, Dürkop T, Brintlinger T (2002) High-mobility nanotube transistor memory. Nano Lett 2(7):755–759

    Article  Google Scholar 

  9. Züttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C, Schlapbach L (2002) Hydrogen storage in carbon nanostructures. Int J Hydrogen Energy 27(2):203–212

    Article  Google Scholar 

  10. Huang P, Wu F, Zhu B, Gao X, Zhu H, Yan T, Huang W, Wu S, Song D (2005) CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst. J Phys Chem B 109(41):19169–19174

    Article  Google Scholar 

  11. Dávila LP, Leppert VJ, Bringa EM (2009) The mechanical behavior and nanostructure of silica nanowires via simulations. Scr Mater 60(10):843–846

    Article  Google Scholar 

  12. Son SJ, Bai X, Lee SB (2007) Inorganic hollow nanoparticles and nanotubes in nanomedicine: part 1. Drug/gene delivery applications. Drug Discov Today 12(15):650–656

    Google Scholar 

  13. Lu JJ, Yan M, Ge L, Ge SG, Wang SW, Yan JX, Yu JH (2013) Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosens Bioelectron 47:271–277. doi:10.1016/j.bios.2013.03.039

    Article  Google Scholar 

  14. Rambabu U, Munirathnam NR, Chatterjee S, Reddy BS, Han SD (2013) Influence of Bi3+ as a sensitizer and SiO2 shell coating as a protecting layer towards the enhancement of red emission in LnVO4: Bi3+, Eu3+ @ SiO2 (Ln = Gd, Y and Gd/Y) powder phosphors for optical display devices. Ceram Int 39(5):4801–4811. doi:10.1016/j.ceramint.2012.11.070

    Article  Google Scholar 

  15. Chewpraditkul W, Shen Y, Chen D, Nikl M, Beitlerova A (2013) Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation. J Optoelectron Adv Mater 15(1–2):94–98

    Google Scholar 

  16. Liu J, Chang MJ, Gao B, Xu ZG, Zhang HL (2013) Sonication-assisted synthesis of multi-functional gold nanorod/silica core-shell nanostructures. J Alloys Compd 551:405–409. doi:10.1016/j.jallcom.2012.11.042

    Article  Google Scholar 

  17. Cao G (2004) Template-based growth of nanorod arrays by solution methods. In: Optics East, 2004. International Society for Optics and Photonics, pp 185–199

  18. Xue CH, Yin W, Zhang P, Zhang J, Ji PT, Jia ST (2013) UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization. Colloids Surf A Physicochem Eng Asp 427:7–12. doi:10.1016/j.colsurfa.2013.03.021

    Article  Google Scholar 

  19. Bi LF, Li Y, Wang SB, Zhu ZY, Chen YX, Chen YL, Li BZ, Yang YG (2010) Preparation and characterization of twisted periodic mesoporous ethenylene-silica nanorods. J Sol Gel Sci Technol 53(3):619–625. doi:10.1007/s10971-009-2140-x

    Article  Google Scholar 

  20. Pu YY, Li Y, Zhuang W, Zhang M, Li BZ, Yang YG (2012) Preparation and characterizations of helical mesoporous silica nanorods using CTAB and alcohols. Chin Chem Lett 23(10):1201–1204. doi:10.1016/j.cclet.2012.07.010

    Article  Google Scholar 

  21. Wang H, Van Der Voort P, Qu H, Liu S (2013) A simple room-temperature synthesis of mesoporous silica rods with tunable size and porosity. J Nanopart Res 15(3):1–8

    Article  Google Scholar 

  22. Li G, Wang Z, Quan Z, Liu X, Yu M, Wang R, Lin J (2006) Sol-gel growth of Gd2MoO6: Eu3 + nanocrystalline layers on SiO2 spheres (SiO2@ Gd2MoO6: Eu3 + and their luminescent properties. Surf Sci 600(16):3321–3326

    Article  Google Scholar 

  23. Santana-Alonso A, Yanes A, Méndez-Ramos J, Del-Castillo J, Rodríguez V (2010) Sol–gel transparent nano-glass–ceramics containing Eu3+-doped NaYF4 nanocrystals. J Non Cryst Solids 356(18):933–936

    Article  Google Scholar 

  24. Gao R, Qian D, Li W (2010) Sol-gel synthesis and photoluminescence of LaPO4: Eu3+nanorods. Trans Nonferrous Metals Soc China 20(3):432–436

    Article  Google Scholar 

  25. Qiao Y, Chen H, Lin Y, Yang Z, Cheng X, Huang J (2011) Photoluminescent lanthanide-doped silica nanotubes: sol–gel transcription from functional template. J Phys Chem C 115(15):7323–7330. doi:10.1021/jp200515s

    Article  Google Scholar 

  26. Azevedo CB, de Souza EA, de Faria EH, Rocha LA, Calefi PS, Ciuffi KJ, Nassar EJ (2013) Optical properties of Eu-doped hybrid materials prepared from dimethyl and methyl alkoxides precursors. J Lumin 134:551–557. doi:10.1016/j.jlumin.2012.07.030

    Article  Google Scholar 

  27. Haranath D, Gandhi N, Sahai S, Husain M, Shanker V (2010) Highly emissive and low refractive index layers from doped silica nanospheres for solar cell applications. Chem Phys Lett 496(1–3):100–103. doi:10.1016/j.cplett.2010.07.015

    Article  Google Scholar 

  28. Zhang C, Li C, Huang S, Hou Z, Cheng Z, Yang P, Peng C, Lin J (2010) Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31(12):3374–3383. doi:10.1016/j.biomaterials.2010.01.044

    Article  Google Scholar 

  29. Gupta VKN, Mehra A, Thaokar R (2012) Worm-like micelles as templates: formation of anisotropic silver halide nanoparticles. Colloids Surf A Physicochem Eng Asp 393:73–80. doi:10.1016/j.colsurfa.2011.11.003

    Article  Google Scholar 

  30. Yamamoto T, Matsuyama T, Tanaka T, Funabiki T, Yoshida S (1999) Generation of acid sites on silica-supported rare earth oxide catalysts: Structural characterization and catalysis for α-pinene isomerization. Phys Chem Chem Phys 1(11):2841–2849

    Article  Google Scholar 

  31. Chen W, Sammynaiken R, Huang Y (2000) Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y. J Appl Phys 88(3):1424–1431. doi:10.1063/1.373834

    Article  Google Scholar 

  32. Nassar EJ, Ciuffi KJ, Ribeiro SJL, Messaddeq Y (2003) Europium incorporated in silica matrix obtained by sol-gel: luminescent materials. Mater Res 6(4):557–562

    Article  Google Scholar 

  33. Yin JB, Xiang LQ, Zhao XP (2007) Monodisperse spherical mesoporous Eu-doped TiO2 phosphor particles and the luminescence properties. Appl Phys Lett 90(11):113112. doi:10.1063/1.2712495

    Article  Google Scholar 

  34. Wang Y, Ling LS, Zhu HQ, Ding RQ (2006) Anneal and concentration effect on PL properties of sol-gel derived Eu3+ doped SiO2 glass. J Rare Earths 24:199–203

    Article  Google Scholar 

  35. Hreniak D, Jasiorski M, Maruszewski K, Kepinski L, Krajczyk L, Misiewicz J, Strek W (2002) Nature and optical behaviour of heavily europium-doped silica glasses obtained by the sol–gel method. J Non Cryst Solids 298(2):146–152

    Article  Google Scholar 

  36. Buddhudu S, Morita M, Murakami S, Rau D (1999) Temperature-dependent luminescence and energy transfer in europium and rare earth codoped nanostructured xerogel and sol–gel silica glasses. J Lumin 83:199–203

    Article  Google Scholar 

  37. Stone BT, Costa VC, Bray KL (1997) In situ dehydroxylation in Eu3+ -doped sol-gel silica. Chem Mater 9(11):2592–2598

    Article  Google Scholar 

  38. Qiu K, Tian H, Song J, Mao Z, Wang D (2012) Multi-wavelength excitable europium-doped borosilicate glasses for orange-red emission: composition-induced structure and valence variation. J Rare Earths 30(5):408–412

    Article  Google Scholar 

  39. Rodriguez-Liviano S, Aparicio FJ, Rojas TC, Hungría AB, Chinchilla LE, Ocaña M (2011) Microwave-assisted synthesis and luminescence of mesoporous RE-doped YPO4 (RE = Eu, Ce, Tb, and Ce + Tb) nanophosphors with lenticular shape. Cryst Growth Des 12(2):635–645

    Article  Google Scholar 

  40. Mai M, Feldmann C (2012) Microemulsion-based synthesis and luminescence of nanoparticulate CaWO4, ZnWO4, CaWO4: Tb, and CaWO4: Eu. J Mater Sci 47(3):1427–1435

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of this reserch from the National Natural Science Foundation of China (Grant No. 21171066, 51272085), the Openning Research Funds Projects of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University (2013-27), and the Key Technology and Equipment of Efficient Utilization of Oil Shale Resources, No. OSR-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C., Song, Y., Gao, F. et al. Synthesis and luminescence properties of Eu(III)-doped silica nanorods based on the sol–gel process. J Sol-Gel Sci Technol 69, 536–543 (2014). https://doi.org/10.1007/s10971-013-3254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3254-8

Keywords

Navigation