Skip to main content

Advertisement

Log in

Optimization of the process variables in the microwave-induced synthesis of carbon xerogels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Carbon xerogels (CX) can be synthesized by microwave-assisted heating. The transfer of this technology to an industrial scale passes through the optimization of the variables that affect the process. The effect of the main operational variables, i.e., initial volume of the precursor, gelation and ageing time and temperature of the synthesis, on the final porous properties of CX has been evaluated. It was found that the development of porosity in the CX synthesised in the microwave oven is hardly influenced by the increase in the initial volume of the precursor solution. This suggests that it is feasible to scale up the production of these materials by means of microwave heating. Furthermore, the consumption of energy does not increase in proportion to the volume of xerogel synthesized. Thus, the process is energy efficient, saves a considerable amount of time and requires only a single device to carry it out. These advantages, along with the fact that a temperature variation of 10 °C is not determinative in the xerogels’ final properties, indicate that CX could be produced on a large scale in a cost effective way .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15(2):101–114

    Article  Google Scholar 

  2. Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud J-N, Béguin F, Pirard J-P (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43(12):2481–2494

    Article  Google Scholar 

  3. Girgis BS, El-Sherif IY, Attia AA, Fathy NA (2012) Textural and adsorption characteristics of carbon xerogel adsorbents for removal of Cu(II) ions from aqueous solution. J Non-Cryst Solids 358(4):741–747

    Article  Google Scholar 

  4. Yamamoto T, Endo A, Ohmori T, Nakaiwa M (2004) Porous properties of carbon gel microspheres as adsorbents for gas separation. Carbon 42(8–9):1671–1676

    Article  Google Scholar 

  5. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal conductivity of organic aerogels. J Non-Cryst Solids 188(3):226–234

    Article  Google Scholar 

  6. Wiener M, Reichenauer G, Braxmeier S, Hemberger F, Ebert HP (2009) Carbon aerogel-based high-temperature thermal insulation. Int J Thermophys 30(4):1372–1385

    Article  Google Scholar 

  7. Alegre C, Gálvez ME, Baquedano E, Pastor E, Moliner R, Lázaro MJ (2012) Influence of support’s oxygen functionalization on the activity of Pt/carbon xerogels catalysts for methanol electro-oxidation. Int J Hydrogen Energy 37(8):7180–7191

    Article  Google Scholar 

  8. Samant PV, Fernandes JB, Rangel CM, Figueiredo JL (2005) Carbon xerogel supported Pt and Pt–Ni catalysts for electro-oxidation of methanol in basic medium. Catal Today 102–103:173–176

    Article  Google Scholar 

  9. Calvo EG, Lufrano F, Staiti P, Brigandì A, Arenillas A, Menéndez JA (2013) Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. J Power Sour

  10. Halama A, Szubzda B, Pasciak G (2010) Carbon aerogels as electrode material for electrical double layer supercapacitors—Synthesis and properties. Electrochim Acta 55(25):7501–7505

    Article  Google Scholar 

  11. Job N, Marie J, Lambert S, Berthon-Fabry S, Achard P (2008) Carbon xerogels as catalyst supports for PEM fuel cell cathode. Energy Convers Manag 49(9):2461–2470

    Article  Google Scholar 

  12. Liu B, Creager S (2010) Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications. J Power Sources 195(7):1812–1820

    Article  Google Scholar 

  13. Chao YJ, Yuan X, Ma ZF (2008) Preparation and characterization of carbon cryogel (CC) and CC–SiO composite as anode material for lithium-ion battery. Electrochim Acta 53(9):3468–3473

    Article  Google Scholar 

  14. Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54(28):7444–7451

    Article  Google Scholar 

  15. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227

    Article  Google Scholar 

  16. Czakkel O, Marthi K, Geissler E, László K (2005) Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels. Microporous Mesoporous Mater 86(1–3):124–133

    Article  Google Scholar 

  17. Fu R, Zheng B, Liu J, Weiss S, Ying JY, Dresselhaus MS, Dresselhaus G, Satcher JH Jr, Baumann TF (2003) Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical drying in isopropanol. J Mater Res 18(12):2765–2773

    Article  Google Scholar 

  18. Wu D, Fu R, Yu Z (2005) Organic and carbon aerogels from the NaOH-catalyzed polycondensation of resorcinol–furfural and supercritical drying in ethanol. J Appl Polym Sci 96(4):1429–1435

    Article  Google Scholar 

  19. Kraiwattanawong K, Tamon H, Praserthdam P (2011) Influence of solvent species used in solvent exchange for preparation of mesoporous carbon xerogels from resorcinol to formaldehyde via subcritical drying. Microporous Mesoporous Mater 138(1–3):8–16

    Article  Google Scholar 

  20. Yamamoto T, Nishimura T, Suzuki T, Tamon H (2001) Control of mesoporosity of carbon gels prepared by sol–gel polycondensation and freeze drying. J Non-Cryst Solids 288(1–3):46–55

    Article  Google Scholar 

  21. Job N, Sabatier F, Pirard JP, Crine M, Léonard A (2006) Towards the production of carbon xerogel monoliths by optimizing convective drying conditions. Carbon 44(12):2534–2542

    Article  Google Scholar 

  22. Conceição FL, Carrott PJM, Ribeiro Carrott MML (2009) New carbon materials with high porosity in the 1–7 nm range obtained by chemical activation with phosphoric acid of resorcinol–formaldehyde aerogels. Carbon 47(7):1874–1877

    Article  Google Scholar 

  23. Contreras MS, Páez CA, Zubizarreta L, Léonard A, Blacher S, Olivera-Fuentes CG, Arenillas A, Pirard J-P, Job N (2010) A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides. Carbon 48(11):3157–3168

    Article  Google Scholar 

  24. Lin C, Ritter JA (2000) Carbonization and activation of sol–gel derived carbon xerogels. Carbon 38(6):849–861

    Article  Google Scholar 

  25. Zubizarreta L, Arenillas A, Pirard J-P, Pis JJ, Job N (2008) Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH. Microporous Mesoporous Mater 115(3):480–490

    Article  Google Scholar 

  26. Qin G, Wei W, Guo S (2003) Semi-continuous drying of RF gels with supercritical acetone. Carbon 41(4):851–853

    Article  Google Scholar 

  27. Zubizarreta L, Arenillas A, Menéndez JA, Pis JJ, Pirard JP, Job N (2008) Microwave drying as an effective method to obtain porous carbon xerogels. J Non-Cryst Solids 354(33):4024–4026

    Article  Google Scholar 

  28. Tonanon N, Wareenin Y, Siyasukh A, Tanthapanichakoon W, Nishihara H, Mukai SR, Tamon H (2006) Preparation of resorcinol formaldehyde (RF) carbon gels: use of ultrasonic irradiation followed by microwave drying. J Non-Cryst Solids 352(52–54):5683–5686

    Article  Google Scholar 

  29. Calvo EG, Juárez-Pérez EJ, Menéndez JA, Arenillas A (2011) Fast microwave-assisted synthesis of tailored mesoporous carbon xerogels. J Colloid Interface Sci 357(2):541–547

    Article  Google Scholar 

  30. Elkhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol–formaldehyde organic and carbon gels. Adv Mater 23(26):2887–2903

    Article  Google Scholar 

  31. Li J, Wang X, Wang Y, Huang Q, Dai C, Gamboa S, Sebastian PJ (2008) Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. J Non-Cryst Solids 354(1):19–24

    Article  Google Scholar 

  32. Job N, Panariello F, Marien J, Crine M, Pirard J-P, Léonard A (2006) Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol–formaldehyde gels. J Non-Cryst Solids 352(1):24–34

    Article  Google Scholar 

  33. Wiener M, Reichenauer G, Scherb T, Fricke J (2004) Accelerating the synthesis of carbon aerogel precursors. J Non-Cryst Solids 350:126–130

    Article  Google Scholar 

  34. Job N, Panariello F, Crine M, Pirard J-P, Léonard A (2007) Rheological determination of the sol–gel transition during the aqueous synthesis of resorcinol–formaldehyde resins. Colloids Surf A 293(1–3):224–228

    Article  Google Scholar 

  35. Gallegos-Suárez E, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F (2012) On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem Eng J 181–182:851–855

    Article  Google Scholar 

  36. Pérez-Caballero F, Peikolainen AL, Koel M (2008) Preparation of nanostructured carbon materials. Proc Estonian Acad Sci 57(1):48–53

    Article  Google Scholar 

  37. Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG, Bermúdez JM (2010) Microwave heating processes involving carbon materials. Fuel Process Technol 91(1):1–8

    Article  Google Scholar 

  38. Juárez-Pérez EJ, Calvo EG, Arenillas A, Menéndez JA (2010) Precise determination of the point of sol–gel transition in carbon gel synthesis using a microwave heating method. Carbon 48(11):3305–3308

    Article  Google Scholar 

  39. Moreno AH, Arenillas A, Calvo EG, Bermúdez JM, Menéndez JA (2013) Carbonisation of resorcinol–formaldehyde organic xerogels: effect of temperature, particle size and heating rate on the porosity of carbon xerogels. J Anal Appl Pyrolysis 100:111–116

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Ministerio de Economía y Competitividad of Spain MINECO (under Projects MAT2011-23733 and IPT-2012-0689-420000) is greatly acknowledged. N.R.R. is also grateful to MINECO for her predoctoral research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Arenillas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rey-Raap, N., Menéndez, J.A. & Arenillas, A. Optimization of the process variables in the microwave-induced synthesis of carbon xerogels. J Sol-Gel Sci Technol 69, 488–497 (2014). https://doi.org/10.1007/s10971-013-3248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3248-6

Keywords

Navigation