Skip to main content
Log in

Polyacrylamide-methanesulfonic acid gel polymer electrolytes for tin-air battery

  • Orginal Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present work describes the synthesis and characterization of gel polymer electrolytes containing methanesulfonic acid (MSA) with Polyacrylamide (PAAm). The PAAm–MSA gel electrolytes were prepared with different concentrations of MSA. Addition of 0.5 M of MSA into the electrolyte increased the ionic conductivity of PAAm from 1.35 × 10−3 to 1.56 × 10−2 S cm−1. The maximum ionic conductivity of 7.0 × 10−1 S cm−1 was obtained with 3 M MSA at room temperature. The chemical interaction between PAAm and MSA was studied by Fourier transformed infra-red. The performance as a polymer electrolyte was evaluated from the cell discharge and open circuit potential measurements of a tin-air cell. The tin-air cell supported relatively high current, up to 12 mA cm−2 with a maximum power density of 5 mW cm−2. The open-circuit potential of the cell was 1.27 V for 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Othman R, Basirun WJ, Yahya AH, Arof AK (2001) Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells. J Power Sources 103:34–41

    Article  Google Scholar 

  2. Mohamad AA (2006) Zn/gelled 6 M KOH/O2 zinc–air battery. J Power Sources 159:752–757

    Article  Google Scholar 

  3. Iwakura Chiaki, Nohara Shinji, Furukawa Naoji, Inoue Hiroshi (2002) The possible use of polymer gel electrolytes in nickel/metal hydride battery. Solid State Ion 148:487–492

    Article  Google Scholar 

  4. Jamaludin A, Ahmad Z, Ahmad ZA, Mohamad AA (2010) A direct borohydride fuel cell employing a sago gel polymer electrolyte. Int J Hydrogen Ener 35:11229–11236

    Article  Google Scholar 

  5. Isa MIN (2012) Poly (methyl methacrylate)-salicylic acid-oleic acid plasticized gel electrolyte system: electrical and ionic transport study. Res J Phys 6(2):50–58

    Article  Google Scholar 

  6. Oishi A, Matsuoka H, Yasuda T, Watanabe M (2009) Novel styrene/N-phenylmaleimide alternating copolymers with pendant sulfonimide acid groups for polymer electrolyte fuel cell applications. J Mater Chem 19:514–521

    Article  Google Scholar 

  7. He R, Li Q, Xiao G, Bjerrum NJ (2003) Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J Membr Sci 226:169–184

    Article  Google Scholar 

  8. Sekhon S, Singh HP (2004) Proton conduction in polymer gel electrolytes containing chloroacetic acids. Solid State Ion 175:545–548

    Article  Google Scholar 

  9. Yang KK, Mahmoudian MR, Ebadi M, Lee KH, Basirun WJ (2011) Diffusion coefficient of Tin (II) methanesulfonate in ionic liquid and methane sulfonic acid (MSA) solvent. Metall Mater Trans B 42(6):1274–1279

    Article  Google Scholar 

  10. Rosenstein C (1990) Methane sulfonic acid as an electrolyte for tin, lead and tin-lead plating for electronics. Met Finish 88:17–21

    Google Scholar 

  11. Tang C, Zhou D (2012) Methanesulfonic acid solution as supporting electrolyte for zinc-vanadium redox battery Electrochim. Acta 65:179–184

    Google Scholar 

  12. Ng PL, Jamaludin A, Alias Y, Basirun WJ, Ahmad ZA, Mohamad AA (2012) Effect of KOH concentration in the gel polymer electrolyte for direct borohydride fuel cell. J Appl Polym Sci 123(5):2662–2666

    Article  Google Scholar 

  13. Yih SW, Hai CC, Jyh CJ, Sheng HL, Yuan TL, Huan CC (1998) Structures and isomeric transitions of NH4 +(H2O)3-6: from single to double rings. J Am Chem Soc 120:8777–8788

    Article  Google Scholar 

  14. Infrared Correlation Charts, CRC (2010) Handbook of Chemistry and Physics 90th ed 1460–1461

  15. J Coates (2000) Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), John Wiley & Sons Ltd, Chichester :10815–10837

  16. Deng Y, Dixon JB, White GN, Loeppert RH, Juo AS (2006) Bonding between polyacrylamide and smectite. Colloids Surf A 281:82–91

    Article  Google Scholar 

  17. Wanchoo R, Sharma P (2003) Viscometric study on the compatibility of some water-soluble polymer–polymer mixtures. Eur Polym J 39(7):1481–1490

    Article  Google Scholar 

  18. Paula CR, Maurıcio PC, Paulo J, Paulo CNS, Alvaro LM, Luiz PR, Maria ABG (2002) Polyaniline/lignin blends: FTIR, MEV and electrochemical characterization. Eur Polym J 38:2213–2217

    Article  Google Scholar 

  19. Lin C, Chen S, Lien M (1995) Site of protonation and proton affinity of acrylamide. A theoretical study. J Phys Chem 99:1454–1461

    Article  Google Scholar 

  20. Givan A, Loewenschuss A, Nielsen CJ (2005) Infrared spectrum and ab initio calculations of matrix isolated methanesulfonic acid species and its 1:1 water complex. J Mol Struct 748:77–90

    Article  Google Scholar 

  21. Ibrahim S, Mariah S, Yasin M, Ahmad R, Johan MR (2012) Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid State Sci 152(5):426–434

    Google Scholar 

  22. Sharma JP, Yamada K, Sekhon S (2012) Conductivity study on PEO based polymer electrolytes containing hexafluorophosphate anion: effect of plasticizer. Macromol Symp 315(1):188–197

    Article  Google Scholar 

  23. Tripathi S, Gupta A, Kumari M (2012) Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte Bull. Mat Sci 35:969–975

    Google Scholar 

  24. Othman L, Chew K, Osman Z (2007) Impedance spectroscopy studies of poly (methyl methacrylate)-lithium salts polymer electrolyte systems. Ionics 13:337–342

    Article  Google Scholar 

  25. Thierry M, Atsushi N, Masayoshi W (2000) Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer. Electrochim Acta 45(8–9):1347–1360

    Google Scholar 

  26. Ahmad A, Isa K, Osman Z (2011) Conductivity and structural studies of plasticized polyacrylonitrile (PAN)-lithium triflate polymer electrolyte. Films Sains Malaysiana 40:691–694

    Google Scholar 

  27. Agrawal R, Pandey G (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41:223001

    Article  Google Scholar 

  28. Song W, Wang Y, Deng H (2004) Ion-conducting polymer gels of polyacrylamide embedded with K2CO3. J Appl Polym Sci 92(4):2076–2081

    Article  Google Scholar 

  29. Rajendran S, Sivakumar P, Babu RS (2007) Studies on the salt concentration of a PVdF–PVC based polymer blend electrolyte. J Power Sources 164:815–821

    Article  Google Scholar 

  30. Stadniy IA, Konovalova VV, Samchenko YM, Pobigay GA, Burban AF, Ulberg ZR (2011) Development of hydrogel polyelectrolyte membranes with fixed sulpho-groups via radical copolymerization of acrylic monomers. Mater Sci Appl 2:270–275

    Google Scholar 

  31. Rozali M, Samsudin A, Isa M (2012) Ion conducting mechanism of carboxy methylcellulose doped with ionic dopant salicylic acid based solid polymer electrolytes. Int J Appl Sci Technol 2(4):113–121

    Google Scholar 

  32. Sookhakian M, Amin YM, Basirun WJ (2013) Hierarchically ordered macro-mesoporous ZnS microsphere with reduced graphene oxide supporter for a highly efficient photodegradation of methylene blue. Appl Surf Sci 283:668–677

    Article  Google Scholar 

  33. Sookhakian M, Amin YM, Basirun WJ, Tajabadi MT, Kamarulzaman N (2014) Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure. J Lumines 145:244–252

    Article  Google Scholar 

  34. Sekhon S, Arora N, Singh HP (2003) Effect of donor number of solvent on the conductivity behaviour of nonaqueous proton-conducting polymer gel electrolytes. Solid State Ion 160(3-4):301–307

    Article  Google Scholar 

  35. Cohn G, Altberg A, Macdonald DD, Ein EY (2011) A silicon–air battery utilizing a composite polymer electrolyte. Electrochim Acta 58:161–164

    Article  Google Scholar 

  36. Cohn G, Starosvetsky D, Hagiwara R, Macdonald DD, Ein EY (2009) Silicon-air batteries. Electrochem Commun 11:1916–1918

    Article  Google Scholar 

  37. Khomenko VG, Barsukov VZ, Katashinskii AS (2005) The catalytic activity of conducting polymers toward oxygen reduction. Electrochim Acta 50:1675–1683

    Article  Google Scholar 

  38. Electrochemical Series (2010) CRC Handbook of Chemistry and Physics, 90th ed 1218–1219

Download references

Acknowledgments

The authors would like to thank University Malaya and Ministry of Higher Education, for providing financial assistance with Grant Number FP033 2013A and RG181-12SUS for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sumathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumathi, S., Sethuprakash, V., Basirun, W.J. et al. Polyacrylamide-methanesulfonic acid gel polymer electrolytes for tin-air battery. J Sol-Gel Sci Technol 69, 480–487 (2014). https://doi.org/10.1007/s10971-013-3247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3247-7

Keywords

Navigation