Skip to main content

Synthesis of SnO2 nanostructures by ultrasonic-assisted sol–gel method

Abstract

Fluorine doped SnO2 nanostructures were grown using ultrasonic assisted sol–gel method. The gel was obtained by dissolving stannous chloride in methanol with ammonium fluoride as dopant followed by irradiation with ultrasonic vibrations. Obtained samples were characterized by structural, morphological and optical studies. All the peaks in the X-ray diffractograms are identified and indexed as tetragonal cassiterite structure. Negative slope of Williamson–Hall plots indicates compressive strain. Particle size of SnO2 nanostructures is decreases with increases in concentration of fluorine doping. Atomic force microscopy, scanning electron microscopy and transmission electron microscopy studies confirm the formation of ring like porous structures and then hollow tube like growth with increase in the fluorine concentration. Peaks in Raman spectra also indicate strong confinement in SnO2 particles. Distinct peaks in the PL spectra make the structure suitable for photovoltaic applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Anderson JC (1986) J Vac Sci Technol A4(3):610–616

    Article  Google Scholar 

  2. 2.

    Lee JS, Sim SK, Min B, Cho K, Kim SW, Kim S (2004) J Cryst Growth 267:145–149

    Article  Google Scholar 

  3. 3.

    San MA (2006) Chem Soc Rev 35:876–889

    Article  Google Scholar 

  4. 4.

    Gnanam S, Rajendran V (2010) Dig J Nanomater Bios 5(3):699–704

    Google Scholar 

  5. 5.

    Mendes PG, Moreira ML, Tebcherani SM, Orlandi MO, Andres J, Li MS, Diaz Mora N, Varela JA, Longo E (2012) J Nanopart Res 14:750–762

    Article  Google Scholar 

  6. 6.

    Wang L, Luo X, Zheng X, Wang R, Zhang T (2013) RSC Adv 3:9723–9728

    Article  Google Scholar 

  7. 7.

    Rajaram P, Goswami YC, Rajagopalan S, Gupta VK (2002) Mater Lett 54:158–163

    Article  Google Scholar 

  8. 8.

    Cheng B, Xie C, Fang L, Xiao Y, Lei S (2011) Mater Chem Phys 129:713–717

    Article  Google Scholar 

  9. 9.

    Calestani D, Lazzarini L, Salviati G, Zha M (2005) Cryst Res Technol 40:937–941

    Article  Google Scholar 

  10. 10.

    Liu Y, Dong J, Liu M (2004) Adv Mater 16:353–356

    Article  Google Scholar 

  11. 11.

    Nomura K, Iio S, Hirose Y, Reuther H, Nakanishi A (2013) Hyperfine Interact 217(1–3):37–43

    Article  Google Scholar 

  12. 12.

    Verduraz FB, Fievet F, Piquemal JY, Brayner R, Kabouss KE, Soumare Y, Viau G, Shafeev G (2009) Braz J Phys 39(1):134–140

    Article  Google Scholar 

  13. 13.

    Chang S, Doong R (2005) Thin Solid Films 489:17–22

    Article  Google Scholar 

  14. 14.

    Mamat MH, Khusaimi Z, Zahidi MM, Mahmood MR (2012) In: Yalcin O (ed) NanoRods, 1st edn. In Tech, Europe. doi:10.5772/34828

  15. 15.

    Chilibon I, Mendes JM, Igreja R, Dias CJ (2005) J Optoelectron Adv Mater 7(5):2727–2735

    Google Scholar 

  16. 16.

    Klug H, Alexander L (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  17. 17.

    Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, New Jersey

    Google Scholar 

  18. 18.

    Suryanarayana C, Norton MG (1998) X-ray diffraction: a practical approach. Plenum Press, New York

    Book  Google Scholar 

  19. 19.

    Ramadan AA, Abd El-Mongy AA, Moustafa SH, Abdel Rahman E, El-Shabiny AM, Salman SMM, Mater AT, Hashem HM (2013) Int J Thin Film Sci Tec 2(11):1–8

    Google Scholar 

  20. 20.

    Murakami K, Nakajima K, Kaneko S (2007) Thin Solid Films 515:8632–8636

    Article  Google Scholar 

  21. 21.

    Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) Rev Sci Instrum 78:137051–137058

    Article  Google Scholar 

  22. 22.

    Cavaliere S, Subianto S, Savych I, Tillard M, Jones DJ, Roziere J (2013) J Phys Chem C 117(36):18298–18307

    Article  Google Scholar 

  23. 23.

    Hytch MJ, Plamann T (2001) Ultramicroscopy 87(4):199–212

    Article  Google Scholar 

  24. 24.

    Gontia II, Baibarac M, Baltog I (2011) Phys Status Solidi B 248(6):1494–1498

    Article  Google Scholar 

  25. 25.

    Chaisitsak S (2011) Sensors 11:7127–7140

    Article  Google Scholar 

  26. 26.

    Sangaletti L, Depero LE, Allieri B, Pioselli F, Comini E, Sberveglieri G, Zocchi M (1998) J Mater Res 13:2457–2460

    Article  Google Scholar 

  27. 27.

    Mcguire K, Pan ZW, Wang ZL, Milkie D, Menendez J, Raoa AM (2002) J Nanosci Nanotechnol 2(5):1–4

    Article  Google Scholar 

  28. 28.

    Peercy PS, Morosin B (1973) Phys Rev B7:2779–2786

    Article  Google Scholar 

  29. 29.

    Najafi E, Kheirkhahi M, Amini MM, Ng SW (2013) J Inorg Organomet P 23(4):1015–1022

    Article  Google Scholar 

  30. 30.

    Lopes JMJ, Zawislak FC, Behar M, Fichtner PFP, Rebohle L, Skorupa W (2003) J Appl Phys 94(9):6059–6064

    Article  Google Scholar 

  31. 31.

    He JH, Wu TH, Hsin CL, Li KM, Chen LJ, Chueh YL, Chou LJ, Wang ZL (2006) Small 2:116–120

    Article  Google Scholar 

  32. 32.

    Hu JQ, Ma XL, Shang NG, Xie ZY, Wong NB, Lee CS, Lee ST (2002) J Phys Chem B 106:3823–3836

    Article  Google Scholar 

  33. 33.

    Kim HW, Kim NH, Myung JH, Shim SH (2005) Phys Status Solidi 202:1758–1762

    Article  Google Scholar 

  34. 34.

    Brovelli S, Chiodini N, Meinardi F, Lauria A, Paleari A (2006) Appl Phys Lett 89(153126):1–3

    Google Scholar 

  35. 35.

    Gu F, Wang SF, Song CF, Lv MK, Qi YX, Zhou GJ, Xu D, Yuan DR (2003) Chem Phys Lett 372:451–454

    Article  Google Scholar 

  36. 36.

    Wang JJ, Lv AF, Wang YQ, Cui B, Yan HJ, Hu JS, Hu WP, Guo YG, Wan LJ (2013) Sci Rep 3:2613. doi:10.1038/srep02613

    Google Scholar 

Download references

Acknowledgments

Y. C. Goswami is thankful to AICTE-CAYT and MPCST for funding this work. The authors are also thankful to SAIF Lab, Punjab University, Chandigarh India for providing XRD facility; School of Materials, University of Manchester UK for providing TEM and Raman facility & UGC-DAE Consortium for Scientific Research, Indore India for providing AFM facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. C. Goswami.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goswami, Y.C., Kumar, V., Rajaram, P. et al. Synthesis of SnO2 nanostructures by ultrasonic-assisted sol–gel method. J Sol-Gel Sci Technol 69, 617–624 (2014). https://doi.org/10.1007/s10971-013-3241-0

Download citation

Keywords

  • Nanostructures
  • Sol–gel
  • SnO2
  • Ultrasonic
  • Metal oxides