Journal of Sol-Gel Science and Technology

, Volume 70, Issue 2, pp 180–190 | Cite as

Synthesis and applications of mesoporous nanocomposites containing metal nanoparticles

  • Paula C. Angelomé
  • Luis M. Liz-Marzán
Original Paper


Metal nanoparticles (NP) and mesoporous (MP) oxides are complementary materials, since the size scale of pores in MP oxides matches that of NP and both systems have potential applications in similar fields. Besides, nanocomposites obtained through their combination possess not only the intrinsic properties of each component, but also new features derived from the synergy between them, mainly due to the high interfacial area between the metal and the oxide. Thus, new optical, catalytic and sensing properties can be achieved that are not easily available from the individual components. In this review, we focus our attention on such NP@MP composites, not only from the point of view of the most common synthesis pathways but also briefly describing their applications in fields as diverse as (photo)catalysis, sensing, photochromism and other optical properties, as well as patterning.


Metal nanoparticles Mesoporous oxides Thin films Sensors Catalysis 



We thank Dr. M. Cecilia Fuertes and Eduardo Martínez for kindly provide some of the images presented in Figs. 2 and 7. P.C.A. is a CONICET researcher. L.M.L.-M. acknowledges funding from the European Research Council (ERC Advanced Grant No. 267867, Plasmaquo).


  1. 1.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103. doi: 10.1002/anie.200802248 CrossRefGoogle Scholar
  2. 2.
    Daniel M-C, Astruc D (2003) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. doi: 10.1021/cr030698+ CrossRefGoogle Scholar
  3. 3.
    Schätz A, Reiser O, Stark WJ (2010) Nanoparticles as semi-heterogeneous catalyst supports. Chem Eur J 16(30):8950–8967. doi: 10.1002/chem.200903462 CrossRefGoogle Scholar
  4. 4.
    Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872. doi: 10.1002/anie.200500766 CrossRefGoogle Scholar
  5. 5.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley science paperback series. Wiley-Interscience, New YorkGoogle Scholar
  6. 6.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer series in materials science. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30(8):1121–1132. doi: 10.1039/B604038C CrossRefGoogle Scholar
  8. 8.
    Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41. doi: 10.1021/la0513353 CrossRefGoogle Scholar
  9. 9.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251. doi: 10.1016/j.nantod.2009.04.001 CrossRefGoogle Scholar
  10. 10.
    Alvarez-Puebla RA, Liz-Marzán LM (2010) SERS-based diagnosis and biodetection. Small 6(5):604–610. doi: 10.1002/smll.200901820 CrossRefGoogle Scholar
  11. 11.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213. doi: 10.1038/nmat2629 CrossRefGoogle Scholar
  12. 12.
    Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908. doi: 10.1039/B712170A CrossRefGoogle Scholar
  13. 13.
    Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41(7):2885–2911. doi: 10.1039/c2cs15260f CrossRefGoogle Scholar
  14. 14.
    Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791. doi: 10.1039/B711490G CrossRefGoogle Scholar
  15. 15.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712. doi: 10.1038/359710a0 CrossRefGoogle Scholar
  16. 16.
    Sánchez C, Boissière C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20(3):682–737. doi: 10.1021/cm702100t CrossRefGoogle Scholar
  17. 17.
    Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chemical Strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102(11):4093–4138. doi: 10.1021/cr0200062 CrossRefGoogle Scholar
  18. 18.
    Kresge CT, Roth WJ (2013) The discovery of mesoporous molecular sieves from the twenty year perspective. Chem Soc Rev 42(9):3663–3670. doi: 10.1039/c3cs60016e CrossRefGoogle Scholar
  19. 19.
    Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42(9):4198–4216. doi: 10.1039/c3cs35377j CrossRefGoogle Scholar
  20. 20.
    Wang Q, Shantz DF (2008) Ordered mesoporous silica-based inorganic nanocomposites. J Solid State Chem 181(7):1659–1669. doi: 10.1016/j.jssc.2008.06.015 CrossRefGoogle Scholar
  21. 21.
    White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev 38(2):481–494. doi: 10.1039/B802654H CrossRefGoogle Scholar
  22. 22.
    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11(7):579–585. doi: 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R CrossRefGoogle Scholar
  23. 23.
    Andersson M, Birkedal H, Franklin NR, Ostomel T, Boettcher S, Palmqvist AEC, Stucky GD (2005) Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis. Chem Mater 17(6):1409–1415. doi: 10.1021/cm0485761 CrossRefGoogle Scholar
  24. 24.
    Bannat I, Wessels K, Oekermann T, Rathousky J, Bahnemann D, Wark M (2009) Improving the photocatalytic performance of mesoporous titania films by modification with gold nanostructures. Chem Mater 21(8):1645–1653. doi: 10.1021/cm803455k CrossRefGoogle Scholar
  25. 25.
    Besson S, Gacoin T, Ricolleau C, Boilot J-P (2003) Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chem Comm 3:360–361. doi: 10.1039/b208357d CrossRefGoogle Scholar
  26. 26.
    Horiuchi Y, Shimada M, Kamegawa T, Mori K, Yamashita H (2009) Size-controlled synthesis of silver nanoparticles on Ti-containing mesoporous silica thin film and photoluminescence enhancement of rhodamine 6G dyes by surface plasmon resonance. J Mater Chem 19(37):6745–6749. doi: 10.1039/b910474g CrossRefGoogle Scholar
  27. 27.
    Martínez ED, Bellino MG, Soler-Illia GJAA (2009) Patterned production of silver–mesoporous titania nanocomposite thin films using lithography-assisted metal reduction. ACS Appl Mater Interfaces 1(4):746–749. doi: 10.1021/am900018j CrossRefGoogle Scholar
  28. 28.
    Nadar L, Sayah R, Vocanson F, Crespo-Monteiro N, Boukenter A, Sao Joao S, Destouches N (2011) Influence of reduction processes on the colour and photochromism of amorphous mesoporous TiO2 thin films loaded with a silver salt. Photochem Photobiol Sci 10(11):1810–1816. doi: 10.1039/c1pp05172e CrossRefGoogle Scholar
  29. 29.
    Plyuto Y, Berquier J-M, Jacquiod C, Ricolleau C (1999) Ag nanoparticles synthesised in template-structured mesoporous silica films on a glass substrate. Chem Comm 17:1653–1654. doi: 10.1039/a904681j CrossRefGoogle Scholar
  30. 30.
    Qi H, Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J Am Chem Soc 133(11):3728–3731. doi: 10.1021/ja110369d CrossRefGoogle Scholar
  31. 31.
    Gu J-L, Shi J-L, You G-J, Xiong L-M, Qian S-X, Hua Z-L, Chen H-R (2005) Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response. Adv Mater 17(5):557–560. doi: 10.1002/adma.200401085 CrossRefGoogle Scholar
  32. 32.
    Lu Q, Cui F, Dong C, Hua Z, Shi J (2011) Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities. Opt Mater 33(8):1266–1271. doi: 10.1016/j.optmat.2011.02.024 CrossRefGoogle Scholar
  33. 33.
    Petkov N, Platschek B, Morris MA, Holmes JD, Bein T (2007) Oriented Growth of Metal and Semiconductor Nanostructures within Aligned Mesoporous Channels. Chem Mater 19(6):1376–1381. doi: 10.1021/cm0627239 CrossRefGoogle Scholar
  34. 34.
    Calvo A, Fuertes MC, Yameen B, Williams FJ, Azzaroni O, Soler-Illia GJAA (2010) Nanochemistry in confined environments: polyelectrolyte brush-assisted synthesis of gold nanoparticles inside ordered mesoporous thin films. Langmuir 26(8):5559–5567. doi: 10.1021/la9038304 CrossRefGoogle Scholar
  35. 35.
    Crespo-Monteiro N, Destouches N, Bois L, Chassagneux F, Reynaud S, Fournel T (2010) Reversible and irreversible laser microinscription on silver-containing mesoporous titania films. Adv Mater 22(29):3166–3170. doi: 10.1002/adma.201000340 CrossRefGoogle Scholar
  36. 36.
    Fukuoka A, Araki H, Sakamoto Y, Sugimoto N, Tsukada H, Kumai Y, Akimoto Y, Ichikawa M (2002) Template synthesis of nanoparticle arrays of gold and platinum in mesoporous silica films. Nano Lett 2(7):793–795. doi: 10.1021/nl0256107 CrossRefGoogle Scholar
  37. 37.
    Kumai Y, Tsukada H, Akimoto Y, Sugimoto N, Seno Y, Fukuoka A, Ichikawa M, Inagaki S (2006) Highly ordered platinum nanodot arrays with cubic symmetry in mesoporous thin films. Adv Mater 18(6):760–762. doi: 10.1002/adma.200502184 CrossRefGoogle Scholar
  38. 38.
    Fuertes MC, Marchena M, Marchi MC, Wolosiuk A, Soler-Illia GJAA (2009) Controlled deposition of silver nanoparticles in mesoporous single- or multilayer thin films: from tuned pore filling to selective spatial location of nanometric objects. Small 5(2):272–280. doi: 10.1002/smll.200800894 CrossRefGoogle Scholar
  39. 39.
    Bois L, Chassagneux F, Battie Y, Bessueille F, Mollet L, Parola S, Destouches N, Toulhoat N, Moncoffre N (2009) Chemical growth and photochromism of silver nanoparticles into a mesoporous titania template. Langmuir 26(2):1199–1206. doi: 10.1021/la902339j CrossRefGoogle Scholar
  40. 40.
    Cui F, Hua Z, Wei C, Li J, Gao Z, Shi J (2009) Highly dispersed Au nanoparticles incorporated mesoporous TiO2 thin films with ultrahigh Au content. J Mater Chem 19(41):7632–7637. doi: 10.1039/B912016E CrossRefGoogle Scholar
  41. 41.
    Fang J-Y, Qin S-Q, Zhang X-A, Nie Y-M, Wang F (2012) Linear and nonlinear optical properties of gold nanocrystal-incorporated mesoporous silica thin films. RSC Adv 2(31):11777–11785. doi: 10.1039/c2ra21395h CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Yuwono AH, Li J, Wang J (2008) Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration. Micropor Mesopor Mater 110(2–3):242–249. doi: 10.1016/j.micromeso.2007.06.009 CrossRefGoogle Scholar
  43. 43.
    Pérez MD, Otal E, Bilmes SA, Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2004) Growth of gold nanoparticle arrays in TiO2 mesoporous matrixes. Langmuir 20(16):6879–6886. doi: 10.1021/la0497898 CrossRefGoogle Scholar
  44. 44.
    Wu C-W, Yamauchi Y, Ohsuna T, Kuroda K (2006) Structural study of highly ordered mesoporous silica thin films and replicated Pt nanowires by high-resolution scanning electron microscopy (HRSEM). J Mater Chem 16(30):3091–3098. doi: 10.1039/b604062d CrossRefGoogle Scholar
  45. 45.
    Kanno Y, Suzuki T, Yamauchi Y, Kuroda K (2012) Preparation of Au nanowire films by electrodeposition using mesoporous silica films as a template: vital effect of vertically oriented mesopores on a substrate. J Phys Chem C 116(46):24672–24680. doi: 10.1021/jp308772b CrossRefGoogle Scholar
  46. 46.
    Bois L, Chassagneux F, Desroches C, Battie Y, Destouches N, Gilon N, Parola S, Stéphan O (2010) Electroless growth of silver nanoparticles into mesostructured silica block copolymer films. Langmuir 26(11):8729–8736. doi: 10.1021/la904491v CrossRefGoogle Scholar
  47. 47.
    Malfatti L, Falcaro P, Marmiroli B, Amenitsch H, Piccinini M, Falqui A, Innocenzi P (2011) Nanocomposite mesoporous ordered films for lab-on-chip intrinsic surface enhanced Raman scattering detection. Nanoscale 3(9):3760–3766. doi: 10.1039/C1NR10404G CrossRefGoogle Scholar
  48. 48.
    Goettmann F, Moores A, Boissière C, Le Floch P, Sanchez C (2005) A selective chemical sensor based on the plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small 1(6):636–639. doi: 10.1002/smll.200500037 CrossRefGoogle Scholar
  49. 49.
    Battie Y, Destouches N, Bois L, Chassagneux F, Tishchenko A, SP Parola, Boukenter A (2010) Growth mechanisms and kinetics of photoinduced silver nanoparticles in mesostructured hybrid silica films under UV and visible illumination. J Phys Chem C 114(19):8679–8687. doi: 10.1021/jp9046903 CrossRefGoogle Scholar
  50. 50.
    Malfatti L, Marongiu D, Costacurta S, Falcaro P, Amenitsch H, Marmiroli B, Grenci G, Casula MF, Innocenzi P (2010) Writing self-assembled mesostructured films with in situ formation of gold nanoparticles. Chem Mater 22(6):2132–2137. doi: 10.1021/cm902625v CrossRefGoogle Scholar
  51. 51.
    Chassagneux F, Simon J-P, Bois L, Desroches C, Brioude A (2011) Reorganization induced by silver salt reduction inside a mesostructured block copolymer silica film. J Phys Chem C 115(51):25201–25208. doi: 10.1021/jp207207x CrossRefGoogle Scholar
  52. 52.
    Gu J, Shi J, Xiong L, Chen H, Ruan M (2004) A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films. Micropor Mesopor Mater 74(1–3):199–204. doi: 10.1016/j.micromeso.2004.06.019 CrossRefGoogle Scholar
  53. 53.
    Krylova GV, Gnatyuk YI, Smirnova NP, Eremenko AM, Gun’ko VM (2009) Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method. J Sol–Gel Sci Technol 50(2):216–228. doi: 10.1007/s10971-009-1954-x CrossRefGoogle Scholar
  54. 54.
    Cortial G, Siutkowski M, Goettmann F, Moores A, Boissière C, Grosso D, Le Floch P, Sanchez C (2006) Metallic nanoparticles hosted in mesoporous oxide thin films for catalytic applications. Small 2(8–9):1042–1045. doi: 10.1002/smll.200600154 CrossRefGoogle Scholar
  55. 55.
    Yang Z, Ni W, Kou X, Zhang S, Sun Z, Sun L-D, Wang J, Yan C-H (2008) Incorporation of gold nanorods and their enhancement of fluorescence in mesostructured silica thin films. J Phys Chem C 112(48):18895–18903. doi: 10.1021/jp8069699 CrossRefGoogle Scholar
  56. 56.
    Kobayashi Y, Correa-Duarte MA, Liz-Marzán LM (2001) Sol–gel processing of silica-coated gold nanoparticles. Langmuir 17(20):6375–6379. doi: 10.1021/la010736p CrossRefGoogle Scholar
  57. 57.
    Pérez-Juste J, Correa-Duarte MA, Liz-Marzán LM (2004) Silica gels with tailored, gold nanorod-driven optical functionalities. Appl Surf Sci 226(1–3):137–143. doi: 10.1016/j.apsusc.2003.11.013 CrossRefGoogle Scholar
  58. 58.
    May RA, Patel MN, Johnston KP, Stevenson KJ (2009) Flow-based multiadsorbate ellipsometric porosimetry for the characterization of mesoporous Pt–TiO2 and Au–TiO2 nanocomposites. Langmuir 25(8):4498–4509. doi: 10.1021/la8038158 CrossRefGoogle Scholar
  59. 59.
    Mitra A, Jana D, De G (2012) A facile synthesis of cubic Im(-3)m alumina films on glass with potential catalytic activity. Chem Comm 48(27):3333–3335. doi: 10.1039/c2cc18053g CrossRefGoogle Scholar
  60. 60.
    Patel MN, Williams RD, May RA, Uchida H, Stevenson KJ, Johnston KP (2008) Electrophoretic deposition of Au nanocrystals inside perpendicular mesochannels of TiO2. Chem Mater 20(19):6029–6040. doi: 10.1021/cm8012705 CrossRefGoogle Scholar
  61. 61.
    Angelomé PC, Liz-Marzán LM (2010) Monitoring solvent evaporation from thin films by localized surface plasmon resonance shifts. J Phys Chem C 114(43):18379–18383. doi: 10.1021/jp106528n CrossRefGoogle Scholar
  62. 62.
    Angelomé PC, Pastoriza-Santos I, Pérez Juste J, Rodríguez-González B, Zelcer A, Soler-Illia GJAA, Liz Marzán LM (2012) Growth and branching of gold nanoparticles through mesoporous silica thin films. Nanoscale 4:931–939. doi: 10.1039/c2nr11547f CrossRefGoogle Scholar
  63. 63.
    López-Puente V, Abalde-Cela S, Angelomé PC, Alvarez-Puebla RA, Liz-Marzán LM (2013) Plasmonic mesoporous composites as molecular sieves for SERS detection. J Phys Chem Lett 2715–2720. doi: 10.1021/jz4014085
  64. 64.
    Muraza O, Rebrov EV, Berenguer-Murcia A, de Croon MHJM, Schouten JC (2009) Selectivity control in hydrogenation reactions by nanoconfinement of polymetallic nanoparticles in mesoporous thin films. Appl Catal A 368(1–2):87–96. doi: 10.1016/j.apcata.2009.08.014 CrossRefGoogle Scholar
  65. 65.
    Hamanaka Y, Fukuta K, Nakamura A, Liz-Marzán LM, Mulvaney P (2004) Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Appl Phys Lett 84(24):4938–4940CrossRefGoogle Scholar
  66. 66.
    Cui F, Feng C, Xie R, Hua Z, Cui X, Zhou J, Wei C, Ohtsuka H, Sakka Y, Shi J (2010) Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment. J Mater Chem 20(38):8399–8404. doi: 10.1039/c0jm00886a CrossRefGoogle Scholar
  67. 67.
    Leroy CM, Cardinal T, Jubera V, Aymonier C, Treguer-Delapierre M, Boissière C, Grosso D, Sanchez C, Viana B, Pellé F (2013) Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn. Micropor Mesopor Mater 170:123–130. doi: 10.1016/j.micromeso.2012.11.014 CrossRefGoogle Scholar
  68. 68.
    Martínez ED, Granja L, Bellino MG, Soler-Illia GJAA (2010) Electrical conductivity in patterned silver–mesoporous titania nanocomposite thin films: towards robust 3D nano-electrodes. Phys Chem Chem Phys 12(43):14445–14448. doi: 10.1039/C0CP00824A CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Gerencia Química, Centro Atómico ConstituyentesComisión Nacional de Energía AtómicaSan Martín, Buenos AiresArgentina
  2. 2.Bionanoplasmonics LaboratoryCIC biomaGUNEDonostia-San SebastiánSpain
  3. 3.IkerbasqueBasque Foundation for ScienceBilbaoSpain
  4. 4.Departamento de Química FísicaUniversidade de VigoVigoSpain

Personalised recommendations