Skip to main content
Log in

Synthesis and electrochemical characterization of duo doped spinels (zinc and praseodymium) for use in lithium rechargeable batteries

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

LiMn2O4 and LiZnxPryMn2−x−yO4 (x = 0.10–0.24; y = 0.01–0.10) powders have been synthesized by sol–gel method using palmitic acid as chelating agent. The synthesized samples have been subjected to thermo gravimetric and differential thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX). The sol–gel route bestows low calcination temperature, shorter heating time, high purity, good control over stoichiometry, small particle size, high surface area, good surface morphology and better homogeneity, The XRD patterns reveal high degree of crystallinity and better phase purity. SEM and TEM images exhibit nano-sized nature particles with good agglomeration. EDAX peaks of Zn, Pr, Mn and O have been confirmed in actual compositions of LiMn2O4 and LiZnxPryMn2−x−yO4. Charge–discharge studies of pristine spinel LiMn2O4 heated at 850 °C delivers discharge capacity of 132 mA h g−1 corresponding to columbic efficiency of 73 % during the first cycle. At the end of 10th cycles, it delivers maximum discharge capacity of 112 mA h g−1 with columbic efficiency of 70 % and capacity fade of 0.15 mA h g−1 cycle−1 over the investigated 10 cycles. Inter alia, all dopants concentrations, LiZn0.10Pr0.10Mn1.80O4 exhibits the better cycling performance (1st cycle discharge capacity: 130 mA h g−1 comparing to undoped spinel 132 mA h g−1) corresponding to columbic efficiency of 73 % with capacity fade of 0.12 mA h g−1 cycle−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tarascon JM, McKinnon WR, Coowar F, Bowner TN, Amatucci G, Guyomard D (1994) J Electrochem Soc 141:1431

    Article  Google Scholar 

  2. Gummow RJ, de Kock A, Thackeray MM (1994) Solid State Ion 69:67

    Article  Google Scholar 

  3. Thackeray MM, de Kock A, Rossouw MH, Liles D, Bittihn R, Hoge DJ (1992) Electrochem Soc 139:366

  4. Xia Y, Yoshio M (1977) J Electrochem Soc 144:2600

    Google Scholar 

  5. Pistoia G, Antonini A, Rosati R, Zane D (1996) Electrochim Acta 41:2689

    Article  Google Scholar 

  6. Jang DH, Shin JY, Oh SM (1996) J Electrochem Soc 143:2211

    Article  Google Scholar 

  7. Yamada A (1996) J Solid State Chem 122:165

    Article  Google Scholar 

  8. Ohuzuku T, Takeda S, Iwanaga M (1999) J Power Sour 90:92

    Google Scholar 

  9. Song D, Ikuta H, Uchida T, Wakihara M (1999) Solid State Ion 117:156

    Article  Google Scholar 

  10. Javed Iqbal M, Zahoor S (2007) J Power Sour 165:397

    Google Scholar 

  11. Lee JH, Hong JK, Jang DH, Sun YK, Oh SM (2000) J Power Sour 89:14

    Google Scholar 

  12. Park SH, Park KS, Sun YK, Nahm KS (2000) J Electrochem Soc 147:2121

    Google Scholar 

  13. Bach S, Henry M, Baffier N, Livage J (1990) J Solid State Chem 88:333

    Article  Google Scholar 

  14. Perreira-Ramos JP (1995) J Power Sour 54:126

    Article  Google Scholar 

  15. Barboux P, Tarascon JM, Shokoohi FK (1991) J Solid State Chem 94:196

    Article  Google Scholar 

  16. Pechini MP (1967) US patent no. 3 330:697

  17. Thirunakaran R, Kalaiselvi N, Periasamy P, Rameshbabu B, Renganathan NG, Muniyandi N (2001) Ionics 7:191

    Article  Google Scholar 

  18. Guo SH, Zhang SC, He XM, Pu WH, Jiang CY, Wan CR (2008) J Electrochem Soc 155:A760

    Article  Google Scholar 

  19. Thirunakaran R, Sivashanmugam A, Gopukumar S, Dunnill Charles W, Gregory Duncan H (2008) J Phys Chem Solids 69:2092

    Article  Google Scholar 

  20. Veluchamy A, Ikuta H, Wakihara M (2001) Solid State Ion 143:171

    Article  Google Scholar 

  21. Fey GTK, Lu CZ, Prem Kumar T (2003) Mater Chem Phys 80:318

    Article  Google Scholar 

  22. Thirunakaran R, Sivashanmugam A, Gopukumar S, Rajalakshimi R (2009) J Power Sour 187:574

    Article  Google Scholar 

  23. Thirunakaran R, Kim K-T, Kang YM, Seo CY, Young-Lee J (2004) J Power Sour 137:104

    Article  Google Scholar 

  24. Thirunakaran R, Kim K-T, Kang YM, Seo CY, Young-Lee J (2005) Mater Res Bull 40:186

    Article  Google Scholar 

  25. Thirunakaran R, Sivashanmugam A, Gopukumar S, Dunnill Charles W, Gregory Duncan H (2008) J Mater Proc Tech 208:531

    Article  Google Scholar 

  26. Thirunakaran R, Sivashanmugam A, Gopukumar S, Dunnill Charles W, Gregory Duncan H (2008) Mater Res Bull 43:2129

    Article  Google Scholar 

  27. Wen W, Kumarasamy B, Mukerjee S, Auinet M, Ein-Eli Y (2005) J Electrochem Soc 152:A1902

    Article  Google Scholar 

  28. Arumugam D, Kalaigan GP, Vediappan K, Lee CW (2010) Electrochim Acta 55:8444

    Google Scholar 

  29. Lee YJ, Park S-H, Eng C, Parise JB, Clare P (2002) Grey Chem Mater 14(1):205

    Google Scholar 

  30. Zhong P, Huguo-Rong, Xiang-Yang Z, Ye-Xiang L (2002) Battery Bimon Chin J. doi:CNKI-ISSN.1001-1579.0:04-000

  31. Xie Y, Yang R, Lan Yan L, Qi KD, He P (2007) J Power Sour 168:272

    Article  Google Scholar 

  32. Iqbal MJ, Ahmad Z (2008) J Power Sour 179:769

    Article  Google Scholar 

  33. Murugan AV, Kale BB, Kunde LB, Kulkarni AV (2006) J Solid State Electrochem 10:109

    Google Scholar 

  34. Kalyani P, Kalaiselvi N, Renganathan NG (2005) Mater Chem Phys 90:202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thirunakaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thirunakaran, R. Synthesis and electrochemical characterization of duo doped spinels (zinc and praseodymium) for use in lithium rechargeable batteries. J Sol-Gel Sci Technol 69, 397–406 (2014). https://doi.org/10.1007/s10971-013-3233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3233-0

Keywords

Navigation