Skip to main content

Advertisement

Log in

Preparation and characterization of antibacterial cobalt-exchanged natural zeolite/poly(vinyl alcohol) hydrogels

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, potential application of the local clinoptilolite-rich natural zeolite in formulation of antibacterial hydrogels was investigated. The zeolite powder exchanged with cobalt(II) ions was used in preparation of the zeolite/poly(vinyl alcohol) hydrogel films in different amounts. The films were physically crosslinked by the freezing-thawing method and characterized for their crystallinity, surface and cross sectional morphology, chemical composition, thermal behaviour, mechanical properties, swelling and dissolution behaviours, and antibacterial activities against a Gram-negative bacteria. The films with 0.48 wt% and higher cobalt-exchanged zeolite contents showed antibacterial activity. Addition of the zeolite powder in the formulations did not cause significant changes in the other properties of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  Google Scholar 

  2. Matsuura T, Abe Y, Sato Y, Okamoto K, Ueshige M, Akagawa Y (1997) Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J Dent 25(5):313–371

    Article  Google Scholar 

  3. Hotta MNH, Yamamoto K, Aono M (1998) Antibacterial temporary filling materials: the effect of adding various ratios of Ag-Zn-zeolite. J Oral Rehabil 25:485–565

    Article  Google Scholar 

  4. Kawahara KTK, Morishita M, Uchida M (2000) Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent Mater 16:452–455

    Article  Google Scholar 

  5. Fumihiko A, Taro M, Yasushi Y, Masanori A, Yasutoshi C, Hiroki O, Toyokazu Y (2000) The evaluation of new wound dressing with antimicrobial delivery capability (non-woven sheet of Ag–Zn zeolite impregnated Ca-alginate fiber). Jpn J Burn Inj 26:63–71

    Google Scholar 

  6. Rivera-Garza M, Olguín MT, García-Sosa I, Alcántara D, Rodríguez-Fuentes G (2000) Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater 39:431–444

    Article  Google Scholar 

  7. Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated condition. J Inorg Biochem 92:37–42

    Article  Google Scholar 

  8. Bruder MH, Ingram, AN (2013) Wound and therapy compress and dressing. US Patent 8420882 B2

  9. Abe YUM, Takeuchi M, Ishii M, Akagawa Y (2003) Cytotoxicity of antimicrobial tissue conditioners containing silver-zeolite. Int J Prosthodont 16:141–144

    Google Scholar 

  10. Jensen JB, Torjalkar A (2003) Composition for wound dressings safely using metallic compounds to produce anti-microbial properties. US Patent 6592888

  11. Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4:114–122

    Article  Google Scholar 

  12. Zhang Y, Zhong S, Zhang M, Lin Y (2009) Antibacterial activity of silver-loaded zeolite a prepared by a fast microwave-loading method. J Mater Sci 44:457–462

    Article  Google Scholar 

  13. Ferreira L, Fonseca AM, Botelho G, Almeida- Aguia C, Neves IC (2012) Antimicrobial activity of faujasite zeolites doped with silver. Microporous Mesoporous Mater 160:126–132

    Article  Google Scholar 

  14. Kamışoğlu K, Aksoy EA, Akata B, Hasırcı N, Baç N (2008) Preparation and characterization of antibacterial zeolite-polyurethane composites. J Appl Polym Sci 110:2854–2861

    Article  Google Scholar 

  15. Boschetto DL, Lerin L, Cansian R, Pergher SBC, Di Luccio M (2012) Preparation and antimicrobial activity of polyethylene composite films with silver exchanged zeolite-Y. Chem Eng J 204–206:210–216

    Article  Google Scholar 

  16. Pehlivan H, Balköse D, Ülkü S, Tıhmınlıoğlu F (2005) Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Compos Sci Technol 65:2049–2058

    Article  Google Scholar 

  17. Fernandez A, Soriano E, Hernandez-Munoz P, Gavara R (2010) Migration of antimicrobial silver from composites of polylactide with silver zeolites. J Food Sci 73:E186–E193

    Article  Google Scholar 

  18. Kaali P, Pérez-Madrigal MM, Strömberg E, Aune RE, Czél Gy, Karlsson S (2011) The influence of Ag+, Zn2+ and Cu2+ exchanged zeolite on antimicrobial and long term in vitro stability of medical grade polyether polyurethane. eXPRESS Polym Lett 5:1028–1040

    Article  Google Scholar 

  19. Fox S, Wilkinson TS, Wheatley PS, Xiao B, Morris RE, Sutherland A, John Simpson A, Barlow PG, Butler AR, Megson IL, Rossi AG (2010) NO-loaded Zn2+-exchanged zeolite materials: a potential bifunctional anti-bacterial strategy. Acta Biomater 6:1515–1521

    Article  Google Scholar 

  20. Özmıhçı F, Balköse D, Ülkü S (2001) Natural zeolite polypropylene composite film preparation and characterization. J Appl Polym Sci 82:2913–2921

    Article  Google Scholar 

  21. Aksoy EA, Akata B, Baç N, Hasurcu N (2007) Preparation and characterization of zeolite beta-polyurethane composite membranes. J Appl Polym Sci 104:3378–3387

    Article  Google Scholar 

  22. Hasırcı N (1991) Polyurethanes. In: Szycher M (ed) High performance biomaterials: comprehensive guide to medical and pharmaceutical application. Technomic Publishing Company, Lancaster, pp 71–90

    Google Scholar 

  23. Yasuyuki M, Kunihiro K, Kurissery S, Kanavillil N, Sato Y, Kikuchi Y (2010) Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling 26:851–858

    Article  Google Scholar 

  24. Cerri G, de’ Gennaro M, Bonferoni MC, Caramella C (2004) Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Appl Clay Sci 27:141–150

    Article  Google Scholar 

  25. Top A, Ülkü S (2004) Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl Clay Sci 27:13–19

    Article  Google Scholar 

  26. Chang EL, Simmers C, Knight DA (2010) Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals 3:1711–1728

    Article  Google Scholar 

  27. Wheatley PS, Butler AR, Crane MS, Fox S, Xiao B, Rossi AG, Megson IL, Morris RE (2006) NO-releasing zeolites and their antithrombotic properties. J Am Chem Soc 128:502–509

    Article  Google Scholar 

  28. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  Google Scholar 

  29. Winter GD (1962) Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature 193:293–294

    Article  Google Scholar 

  30. Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications. In: Andrade JD (ed) Hydrogels for medical and related applications, ACS symposium series. American Chemical Society, Washington, pp 1–36

    Chapter  Google Scholar 

  31. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  Google Scholar 

  32. Hickey AS, Peppas NA (1997) Solute diffusion in poly(vinyl alcohol)/poly(acrylic acid) composite films using freezing/thawing techniques. Polymer 38:5931–5936

    Article  Google Scholar 

  33. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36

    Article  Google Scholar 

  34. Peppas NA (1975) Turbidimetric studies of aqueous poly(vinyl alcohol) solutions. Macromol Chem Phys 176:3433–3440

    Article  Google Scholar 

  35. Peppas NA, Merrill EW (1976) Differential scanning calorimetry of crystallized PVA hydrogels. J Appl Polym Sci 20:1457–1465

    Article  Google Scholar 

  36. Peppas NA, Stauffer SR (1991) Reinforced uncrosslinked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J Control Release 16:305–310

    Article  Google Scholar 

  37. Stauffer SR, Peppas NA (1992) Poly(vinyl alcohol) hydrogels prepared by freezing thawing cyclic processing. Polymer 33:3932–3936

    Article  Google Scholar 

  38. Peppas NA, Scott JE (1992) Controlled release from poly(vinyl alcohol) gels prepared by freezing-thawing processes. J Control Release 18:95–100

    Article  Google Scholar 

  39. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. J Adv Polym Sci 153:37–65

    Article  Google Scholar 

  40. Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479

    Article  Google Scholar 

  41. Peng Z, Kong LX (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 92:1061–1071

    Article  Google Scholar 

  42. Chung YS, Kang SI, Kwon OW, Lee SG, Lee YR, Min BG, Han SS, Noh SH, Lyoo WS (2007) Preparation of hydroxyapatite/poly(vinyl alcohol) composite film. J Appl Polym Sci 104:3240–3244

    Article  Google Scholar 

  43. Jia J, Duan YY, Wang SH, Zhang F, Wang ZY (2007) Preparation and characterization of antibacterial silver-containing nanofibers for wound dressing applications. J US China Med Sci 4:52–54

    Google Scholar 

  44. Li J, Suo J, Deng R (2010) Structure, mechanical, and swelling behaviors of poly(vinyl alcohol)/SiO2 hybrid membranes. J Reinf Plast Compos 29:618–629

    Article  Google Scholar 

  45. Pan Y (2010) Swelling properties of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel biocomposites. Micro Nano Lett 5:237–240

    Article  Google Scholar 

  46. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Euro Polym J 43:773–781

    Article  Google Scholar 

  47. Li M, Lu S, Wu Z, Tan K, Minoura N, Kuga S (2002) Structure and properties of silk fibroin-poly(vinyl alcohol) gel. Int J Biol Macromol 30:89–94

    Article  Google Scholar 

  48. Hong PD, Chen JH, Wu HL (1998) Solvent effect on structural change of poly(vinyl alcohol) physical gels. J Appl Polym Sci 69:2477–2486

    Article  Google Scholar 

  49. Qian XF, Yin J, Yang YF, Lu QH, Zhu ZK, Lu J (2001) Polymer-inorganic nanocomposites prepared by hydrothermal method: preparation and characterization of PVA-transition-metal sulphides. J Appl Polym Sci 82:2744–2749

    Article  Google Scholar 

  50. Sun H, Lu L, Peng F, Wu H (2006) Pervaporation of benzene/cyclohexane mixtures through CMS-filled poly(vinyl alcohol) membranes. Sep Purif Technol 52:203–208

    Article  Google Scholar 

  51. Zidan HM (2003) Structural properties of CrF3- and MnCl2-filled poly(vinyl alcohol) films. J Appl Polym Sci 88:1115–1120

    Article  Google Scholar 

  52. Lue SJ, Chen JY, Yang JM (2008) Crystallinity and stability of poly(vinyl alcohol)-fumed silica mixed matrix membrane. J Macromol Sci B 47:39–51

    Article  Google Scholar 

  53. Sarsfield BA, Davidovich M, Desikan S, Fakes M, Futernik S, Hilden JL, Tan JS, Yin S, Young G, Vakkalagadda B, Volk K (2006) Powder X-ray diffraction detection of crystalline phases in amorphous pharmaceuticals. JCPDS-International Centre for Diffraction Data. ISSN 1097–0002

  54. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Massachusetts

    Google Scholar 

  55. Blanton TN, Barnes CL, Lelental M (1991) The effect of X-ray penetration depth on structural characterization of multiphase Bi-Sr-Ca-Cu-O thin films by X-ray diffraction techniques. Physica C Supercond 173:152–158

    Article  Google Scholar 

  56. Peppas NA, Hansen PJ (1982) Crystallization kinetics of poly(vinyl alcohol). J Appl Polym Sci 27:4787–4797

    Article  Google Scholar 

  57. Crank J, Park GS (1968) Diffusion in polymers. Academic Press, New York

    Google Scholar 

  58. Swartz ML, Norman RD, Gilmore HW, Phillips RW (1957) Studies on syneresis and imbibition in reversible hydrocolloid. J Dent Res 36:472–478

    Article  Google Scholar 

  59. Kunitz M (1928) Syneresis and swelling of gelatin. J Gen Physiol 12:289–312

    Article  Google Scholar 

  60. Pal K, Banthia AK, Majumdar DK (2007) Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS Pharm Sci Tech 8:E1–E5

    Article  Google Scholar 

  61. Takeshita H, Kanaya T, Nishida K, Kaji K (1999) Gelation process and phase separation of PVA solutions as studied by a light scattering technique. Macromolecules 32:7815–7819

    Article  Google Scholar 

  62. Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX, Choi JY, Woo JS, Yoo BK, Lyoo WS, Kim JA, Choi HG (2008) Development of polyvinyl alcohol-sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm 359:79–86

    Article  Google Scholar 

  63. Blum P (1997) Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores by the ocean drilling program. Texas A&M University, Texas

    Book  Google Scholar 

  64. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS (1999) Study on gelatin-containing artificial skin. Part I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 20:409–417

    Article  Google Scholar 

  65. Callister WD Jr (2003) Materials science and engineering: an introduction, 6th edn. Wiley, New York

    Google Scholar 

  66. Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Laupretre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510–9516

    Article  Google Scholar 

  67. Razzak MT, Darmawan D, Zainuddin Sukirno (2001) Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113

    Article  Google Scholar 

  68. Finch CA (1973) Polyvinyl alcohol. Wiley, Bristol

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by Turkish Republic Prime Ministry State Planning Organization (DPT-2006 K120690, Determination of Effects of Zeolite on Health on Cellular and Molecular Level). The reference clinoptilolite mineral with >95 wt% clinoptilolite content (27031, Castle Creek, Idaho) from Mineral Research, Clarkson, New York was kindly supplied by F. Mumpton. We would thank to Prof. Devrim Balköse for her valuable comments. We would also thank to Özen Özyurtsel and Selim Selimoğlu for their help in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Güler Narin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narin, G., Albayrak, Ç.B. & Ülkü, S. Preparation and characterization of antibacterial cobalt-exchanged natural zeolite/poly(vinyl alcohol) hydrogels. J Sol-Gel Sci Technol 69, 214–230 (2014). https://doi.org/10.1007/s10971-013-3206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3206-3

Keywords

Navigation