Skip to main content
Log in

Restraint of stress in fabricating the large areas of crack-free porous silica films in the presence of composite polydimethylsiloxane

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

To present a new method of fabricating the large areas of crack-free porous silica films by introduction of composite polydimethylsiloxanes (PDMS). We employed two kinds of side-chain polyether modified by PDMS terminated with Si–CH3 and Si–OC2H5 groups in preparation of large areas of porous silica films. The porous film presents a mesopore structure with a porosity of 58.0 %, which is fit for thermal-isolating layer applied in pyroelectric devices. The stress evolution on gel-to-ceramic film conversion has been investigated. The results reveal that a slow decrease in tensile stress before 250 °C and a slow increase after 250 °C can be observed, which is closely related to the alteration of chemical composition in the heat-treatment process. It is clear that the stress has been restrained with the addition of composite PDMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akai D, Yokawa M, Hirabayashi K, Matsushita K, Sawada K, Ishida M (2005) Appl Phys Lett 86:202906

    Article  Google Scholar 

  2. Scott JF (2007) Science 315:954–959

    Article  Google Scholar 

  3. Jiang CY, McConney ME, Singamaneni S, Merrick E, Chen YC, Zhao J, Zhang L, Tsukruk VV (2006) Chem Mater 18:2632–2634

    Article  Google Scholar 

  4. Cao ZQ, Zhang TY, Zhang X (2005) J Appl Phys 97:104909

    Article  Google Scholar 

  5. Chung KJ, Peckerar M, Bernstein JB (2013) Microelectron Eng 103:70–75

    Article  Google Scholar 

  6. Pai RA, Humayun R, Schulberg MT, Sengupta A, Sun JN, Watkins JJ (2004) Science 303:507–510

    Article  Google Scholar 

  7. Peiris FC, Hatton BD, Ozin GA, Perovic DD (2005) Appl Phys Lett 87:241902

    Article  Google Scholar 

  8. Singh AP, Gandhi DD, Moore R, Ramanatha G (2007) J Appl Phys 102:044507

    Article  Google Scholar 

  9. Barillaro G, Diligenti A, Nannini A, Pennelli G (2003) Sensor Actuat A-Phys 107:279–284

    Article  Google Scholar 

  10. Castro Y, Ferrari B, Moreno R, Duran A (2004) Surf Coat Tech 182:199–203

    Article  Google Scholar 

  11. Kozuka H, Takenaka S, Tokita H, Hirano T, Higashi Y, Hamatani T (2003) J Sol–Gel Sci Technol 26:681–686

    Article  Google Scholar 

  12. Tadjoa O, Cassagnau P, Chapel JP (2009) Langmuir 25:11205–11209

    Article  Google Scholar 

  13. Biernat JF, Konieczka P, Tarbet BJ, Bradshaw JS, Izatt RM (1994) Sep Purif Rev 23:77–348

    Article  Google Scholar 

  14. Seraji S, Wu Y, Forbess M, Limmer SJ, Chou T, Cao GZ (2000) Adv Mater 12:1695

    Article  Google Scholar 

  15. Doshi DA, Huesing NK, Lu M, Fan H, Lu Y, Simmons-Potter K, Potter BG Jr, Hurd AJ, Brinker CJ (2000) Science 290:107–111

    Article  Google Scholar 

  16. Chow LA, Xu YH, Dunn B, Tu KN, Chiang C (1998) Appl Phys Lett 73:2944–2946

    Article  Google Scholar 

  17. Kozuka H, Kajimura M, Hirano T, Katayama K (2000) J Sol–Gel Sci Technol 19:205–209

    Article  Google Scholar 

  18. Dubois G, Volksen W, Magbitang T, Miller RD, Gage DM, Dauskardt RH (2007) Adv Mater 19:3989–3994

    Article  Google Scholar 

  19. Volksen W, Miller RD, Dubois G (2010) Chem Rev 110:56–110

    Article  Google Scholar 

  20. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Unger KK (1994) Pure Appl Chem 66:1739–1758

    Article  Google Scholar 

  21. Chow LA, Dunn B, Tu KN, Chiang C (2000) J Appl Phys 87:7788–7792

    Article  Google Scholar 

  22. Kilian HG, Strauss M, Hamm W (1994) Rubber Chem Technol 67:1–17

    Article  Google Scholar 

  23. Clément F, Bokobza L, Monnerie L (2001) Rubber Chem Technol 74:847–849

    Article  Google Scholar 

Download references

Acknowledgments

State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinhua Liao or Qiang Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, H., Zhao, B., Liao, X. et al. Restraint of stress in fabricating the large areas of crack-free porous silica films in the presence of composite polydimethylsiloxane. J Sol-Gel Sci Technol 69, 193–198 (2014). https://doi.org/10.1007/s10971-013-3203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3203-6

Keywords

Navigation