Skip to main content
Log in

The anti-adherence and bactericidal activity of sol–gel derived nickel oxide nanostructure films: solvent effect

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study presents the characterization and antibacterial activity of nanostructure NiO films synthesized by sol–gel dip coating method using solvents of different polarities and viscosities without any catalysts, templates or surfactants. Methanol, 1,4-butanediol, ethanol, and 2-propanol were used as solvent. The antibacterial activity was tested against two common foodborne pathogenic bacteria Staphylococcus aureus (ATCC 25922) and Escherichia coli (ATCC 29213) using the so-called antibacterial drop test. X-ray diffraction, scanning electron microscopy, atomic force microscopy, UV–vis spectroscopy and static contact angles test were used to analysis the structure and morphology character, surface topography, optical property and surface wettability of different coatings, respectively. The characterization results showed different preferred crystallographic orientations, particle sizes, surface properties and optical band gap of NiO films according to the solvent physicochemical properties. The antibacterial efficiencies were affected by the physiological status of the bacterial cells and degree of bacteria adherence, morphologies and crystal growth habits, surface and optical properties of NiO samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718

    Article  Google Scholar 

  2. Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

    Article  Google Scholar 

  3. Wach J-Y, Bonazzi S, Gademann K (2008) Antimicrobial surfaces through natural product hybrids. Angew Chem Int Ed 47:7123–7126

    Article  Google Scholar 

  4. Bouloussa O, Rondelez F, Semetey V (2008) A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem Commun 39:951–953

    Article  Google Scholar 

  5. Madkour AE, Dabkowski JM, Nüsslein K, Tew GN (2009) Fast disinfecting antimicrobial surfaces. Langmuir 25:1060–1067

    Article  Google Scholar 

  6. Huang JY, Koepsel RR, Murata H, Wu W, Lee SB, Kowalewski T, Russell AJ, Matyjaszewski K (2008) Nonleaching antibacterial glass surfaces via “Grafting Onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 24:6785–6795

    Article  Google Scholar 

  7. Lampert CM, Omstead TR, Yu PC (1986) Chemical and optical-properties of electrochromic nickel-oxide films. Sol Energy Mater 14:161–174

    Article  Google Scholar 

  8. Park S-J, Kim S-B (2011) Bacterial adhesion to metal oxide-coated surfaces in the presence of silicic acid. Water Environ Res 83:470–476

    Google Scholar 

  9. Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B Biointerfaces 36:81–90

    Article  Google Scholar 

  10. Sato H, Minami T, Takata S, Yamada T (1993) Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 23:27–31

    Article  Google Scholar 

  11. Fujii E, Tomozawa A, Torii H, Takayama R (1996) Preferred orientations of NiO films prepared by plasma-enhanced metal organic chemical vapor deposition. Jpn J Appl Phys 35:L328–L330

    Article  Google Scholar 

  12. Akihiko N, Hisanao U, Seiichi S, Satoshi H, Toshiki K, Eiji S (2005) A high voltage dyesensitized solar cell using a nanoporous NiO photocathode. Chem Lett 34:500–501

    Article  Google Scholar 

  13. Hotovy I, Rehacek V, Siciliano P, Capone S, Spiess L (2002) Sensing characteristics of NiO thin films as NO2 gas sensor. Thin Solid Films 418:9–15

    Article  Google Scholar 

  14. Zhao B, Ke X-K, Bao J-H, Wang C-L, Dong L, Chen Y-W, Chen H-L (2009) Synthesis of flower-like NiO and effects of morphology on its catalytic properties. J Phys Chem C 113:14440–14447

    Article  Google Scholar 

  15. Thota S, Kumar J (2007) Sol-gel synthesis and anomalous magnetic behaviour of NiO nanoparticles. J Phys Chem Solids 68(10):1951–1964

    Article  Google Scholar 

  16. Needham SA, Wang GX, Liu HK (2006) Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J Power Sour 159:254–257

    Article  Google Scholar 

  17. Nakaoka K, Ueyama J, Ogura K (2004) Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films. J Electroanal Chem 571(1):93–99

    Article  Google Scholar 

  18. Avendano E, Berggren L, Niklasson GA, Granqvist CG, Azens A (2006) Electrochromic materials and devices: brief survey and new data on optical absorption in tungsten oxide and nickel oxide films. Thin Solid Films 496:30–36

    Article  Google Scholar 

  19. Korosec RC, Bukovec P (2004) The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films. Thermochim Acta 410:65–71

    Article  Google Scholar 

  20. Pramanik P, Bhattacharya S (1990) A chemical method for the deposition of nickel oxide thin films. J Electrochem Soc 137:3869–3870

    Article  Google Scholar 

  21. [21] Abothu IR, Raj PM, Balaraman D, Sacks MD, Bhattacharya S, Tummala RR (2004) Low-cost embedded capacitor technology with hydrothermal and sol-gel processes. 9th Int’IEEE, symposium on advanced packaging materials p. 78

  22. Amna T, Hassan MS, Yousef A, Mishra A, Barakat NAM, Khil M-S, Kim HY (2013) Inactivation of foodborne pathogens by NiO/TiO2 Composite Nanofibers: a novel biomaterial system. Food Bioprocess Tech 6(4):988–996

    Article  Google Scholar 

  23. Kavitha T, Yuvaraj H (2011) Facile approach to the synthesis of high-quality NiO nanorods: electrochemical and antibacterial properties. J Mater Chem 21(39):15686–15691

    Article  Google Scholar 

  24. Pang H, Lu Q, Li Y, Gao F (2009) Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Communications 48:7542–7544

    Google Scholar 

  25. Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  Google Scholar 

  26. Wang Z, Lee Y-H, Wu B, Horst A, Kang Y, Tang YJ, Chen D-R (2010) Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 80(5):525–529

    Article  Google Scholar 

  27. Hrenovic J, Milenkovic J, Daneu N, Kepcija RM, Rajic N (2012) Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere 88(9):1103–1107

    Article  Google Scholar 

  28. Xi YY, Huang BQ, Djurišić AB, Chan CMN, Leung FCC, Chan WK, Au DTW (2009) Electrodeposition for antibacterial nickel-oxide-based coatings. Thin Solid Films 517:6527–6530

    Article  Google Scholar 

  29. Zang J, Ayusawa T, Minagawa M, Kinugawa K, Matsuoka M, Anpo M (2001) Investigations of TiO2 photocatalysts for the decomposition of NO in the flow system: the role of pretreatment and reaction conditions in the photocatalytic efficiency. J Catal 198:1–8

    Article  Google Scholar 

  30. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis fundamental applications. Published by BKC Inc, Tokyo

    Google Scholar 

  31. Park J, Ahn K, Nah Y, Shim H, Sung Y (2004) Electrochemical and electrochromic properties of Ni oxide thin films prepared by a sol–gel method. J Sol-Gel Sci Tech 31:323–328

    Article  Google Scholar 

  32. Kim S, Park K, Yum J, Sung Y (2006) Pt–NiO nanophase electrodes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:283–290

    Article  Google Scholar 

  33. Kim S, Park K, Yum J, Sung Y (2006) CdS:Ni films obtained by ultrasonic spray pyrolysis: effect of the Ni concentration. Sol Energy Mater Sol Cells 90:283–290

    Article  Google Scholar 

  34. Ibrahim MM, Zhao J, Seehra MS (1992) Determination of particle size distribution in an Fe2O3-based catalyst using magnetometry and X-ray diffraction. J Mater Res 7:1856–1860

    Article  Google Scholar 

  35. Klug HP, Alexander LE (1974) X-ray diffraction procedures. John Wiley, New York

    Google Scholar 

  36. Dutta P, Manivannan A, Seehra MS (2004) Magnetic properties of nearly defect-free maghemite nanocrystals. Phys Rev B 70:174428–174434

    Article  Google Scholar 

  37. Lide DR (ed) (2000) Handbook of chemistry and physics, 81st edn. CRC Press, Boca Raton, FL

    Google Scholar 

  38. Lee JS, Choi SC (2005) Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process. J Eur Ceram Soc 25:3307–3314

    Article  Google Scholar 

  39. Rezapoor M, Talebian N (2011) Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: effect of synthesis methods and reaction media. Mater Chem Phys 129:249–255

    Article  Google Scholar 

  40. Ayudhya SKN, Tonto P, Mekasuwandumrong O, Pavarajarn V, Praserthdam P (2006) Solvothermal synthesis of ZnO with various aspect ratios using organic solvents. Cryst Growth Des 6:2446–2450

    Article  Google Scholar 

  41. Ayudhya SKN, Tonto P, Mekasuwandumrong O, Pavarajarn V, Praserthdam P (2006) Cryst solvothermal synthesis of ZnO with various aspect ratios using organic solvents. Growth Des 6:2446–2450

    Article  Google Scholar 

  42. Chen H-L, Lu Y-M, Wu J-Y, Hwang W-S (2005) Effects of substrate temperature and oxygen pressure on crystallographic orientations of sputtered nickel oxide films. Mater Trans 46(11):2530–2535

    Article  Google Scholar 

  43. Tasker PW (1979) The stability of ionic crystal surfaces. J Phys C: Solid State Phys 12:4977–4984

    Article  Google Scholar 

  44. Oliver PM, Watson GW, Parker SC (1995) Molecular dynamics simulations of nickel oxide surfaces. Phys Rev B 52:5323–5329

    Article  Google Scholar 

  45. Fisher CAJ (2004) Molecular dynamics simulations of reconstructed NiO surfaces. Scr Mater 50:1045–1049

    Article  Google Scholar 

  46. Tauc J (1974) Amorphous and liquid semiconductors. Plenum, London

    Book  Google Scholar 

  47. Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  48. Sawatzky GA, Allen JW (1984) Transition-metal monoxides: band or mott insulators. Phys Rev Lett 53:2339–2342

    Article  Google Scholar 

  49. Terakura K, Williams AR, Oguchi T, Kubler J (1984) Transition-metal monoxides: band or mott insulators. Phys Rev Lett 52:1830–1833

    Article  Google Scholar 

  50. Adler D, Feinleib J (1970) Electrical and optical properties of narrow-band materials. Phys Rev B2:3112–3134

    Article  Google Scholar 

  51. Wang X, Song J, Gao L, Jin J, Zheng H, Zhang Z (2005) Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. Nanotechnology 16:37–39

    Article  Google Scholar 

  52. Lenglet M, Hochu F, Durr J, Tuilier MH (1997) Investigation of the chemical bonding in 3d8 nickel (II) charge transfer insulators (NiO, oxidic spinels) from ligand-field spectroscopy, Ni 2p XPS and X-ray absorption spectroscopy. Solid State Commun 104:793–798

    Article  Google Scholar 

  53. Dexter SC, Sullivan JD, William J, Watson SW (1975) Influence of substrate wettability on the attachment of marine bacteria to various surfaces. Appl Microbiol 30:298–308

    Google Scholar 

  54. [54] Tang P, Zhang W, Wang Y, Zhang B, Wang H, Lin C, Zhang L, Effect of Superhydrophobic Surface of Titanium on Staphylococcus aureus Adhesion J Nanomater (2011) Article ID 178921

  55. van Loosdrecht MCM, Norder W, Lyklema J, Zehnder AJ (1990) Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat Sci 51:103–114

    Article  Google Scholar 

  56. Sousa C, Rodrigues D, Oliveira R, Song W, Mano J, Azeredo J (2011) AMB Expr 1:34

    Article  Google Scholar 

  57. Tang H, Cao T, Liang X, Wang A, Salley SO, McAllister J, Ng S (2008) Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. J Biomed Mater Res Pt A 88A(2):454–463

    Article  Google Scholar 

  58. Gallardo-Moreno AM, Gonzalez-Martin ML, Bruque JM, Perez-Giraldo C (2004) The adhesion strength of Candida parapsilosis to glass and silicone as a function of hydrophobicity, roughness and cell morphology. Colloids Surf A Physiochem Eng Aspects 249:99–103

    Article  Google Scholar 

  59. Quirynen M, Vandermei HC, Bollen CML, Schotte A, Marechal M, Doornbusch GI, Naert I, Busscher HJ, Vansteenberghe DA (1993) An in vivo study of the influence of the surface-roughness of implants on the microbiology of supraginvial and subgingival plaque. J Dent Res 72:1304–1309

    Article  Google Scholar 

  60. Mcallister EW, Carey LC, Brady PG, Heller R, Kovacs SG (1993) The role of polymeric surface smoothness of biliary stents in bacterial adherence, biofilm deposition and stent occlusion. Gastrointest Endosc 39:422–425

    Article  Google Scholar 

  61. Wolf D (1992) Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem. Phys Rev Lett 68:3315–3318

    Article  Google Scholar 

  62. Wander A, Bush IJ, Harrison NM (2003) Stability of rock salt polar surfaces: an ab initio study of MgO (111) and NiO (111). Physi Rev B 68:233405

    Article  Google Scholar 

  63. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalyzed by Co3O4 nanorods. Nature 458:746–749

    Article  Google Scholar 

  64. Chen JS, Tan YL, Li CM, Cheah YL, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130

    Article  Google Scholar 

  65. Zhang X, Gu A, Wang G, Fang B, Yan Q, Zhu J, Sun T, Ma J, Hng HH (2011) Enhanced electrochemical catalytic activity of new nickel hydroxide nanostructures with (100) facet. Cryst Eng Comm 13:188–192

    Article  Google Scholar 

  66. Su D, Ford M, Wang G (2012) Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage. Scientific Reports doi:10.1038/srep00924

  67. Hirota K, Sugimoto M, Kato M, Tsukagoshi K, Tanigawa T, Sugimoto H (2010) Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram Inter 36:497–506

    Article  Google Scholar 

  68. Huang L, Li DQ, Lin Y-J, Wei M, Evans DG, Duan X (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from Islamic Azad University, Shahreza and Flavarjan Branchs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Talebian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talebian, N., Doudi, M. & Kheiri, M. The anti-adherence and bactericidal activity of sol–gel derived nickel oxide nanostructure films: solvent effect. J Sol-Gel Sci Technol 69, 172–182 (2014). https://doi.org/10.1007/s10971-013-3201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3201-8

Keywords

Navigation