Skip to main content
Log in

Room temperature ferromagnetism in Mn-doped ZnS nanocrystalline thin films grown by sol–gel dip coating process

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline Zn1−xMnxS (x = 0.00, 0.01, 0.02, 0.03, 0.05, and 0.1) thin films having different Mn content were grown by the sol–gel dip coating process. The effect of Mn content on the structural, optical and magnetic properties of Zn1−xMnxS nanocrystalline thin films were investigated. X-ray diffraction results showed the presence of single hexagonal phase corresponding to ZnS with a preferred orientation along the ZnS (002) hexagonal plane direction without any detectable secondary phase, suggesting the incorporation of Mn ions into the ZnS lattice. Scanning electron microscope revealed the surface of the nanocrystalline films to be homogeneous and dense and the grains of the film surface were randomly scattered. In ultraviolet–visible measurements, the band gap energy corresponding to the absorption edge estimated were found to be 3.59–3.23 eV depending on the Mn doping ratio. Magnetic measurements showed that a paramagnetic behavior at 5 K and ferromagnetic behavior at 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019

    Article  Google Scholar 

  2. Bartholomew DU, Furdyna JK, Ramdas AK (1986) Phys Rev B 34:6943

    Article  Google Scholar 

  3. Hwang YH, Um YH, Furdyna JK (2004) Semicond Sci Technol 19:565–570

    Article  Google Scholar 

  4. Deng H, Russell JJ, Lamb RN, Jiang B (2004) Thin Solid Films 458:43–46

    Article  Google Scholar 

  5. Goktas A, Aslan F, Yasar E, Mutlu IH (2012) J Mater Sci Mater Electron 23:1361–1366

    Article  Google Scholar 

  6. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Nano Lett 3:33–36

    Article  Google Scholar 

  7. Falcony C, Garcia M, Ortiz A, Alonso JC (1992) J Appl Phys 72:1525

    Article  Google Scholar 

  8. Ding JX, Zapien JA, Chen WW, Lifshitz Y, Lee ST, Meng XM (2004) Appl Phys Lett 85:2361

    Article  Google Scholar 

  9. Polat I, Aksu S, Altunbas M, Yılmaz S, Bacaksız E (2011) J Solid State Chem 184:2683–2689

    Article  Google Scholar 

  10. Sambasivam S, Paul Joseph D, Raja Reddy D, Reddy BK, Jayasankar CK (2008) Mater Sci Eng B 150:125–129

    Google Scholar 

  11. Patel SP, Pivin JC, Patel MK, Won J, Chandra R, Kanjilal D, Kumar L (2012) J Magn Magn Mater 324:2136–2141

    Article  Google Scholar 

  12. Cao J, Han D, Wanga B, Fan L, Fu H, Wei M, Feng B, Liu X, Yang J (2013) J Solid State Chem 200:317–322

    Article  Google Scholar 

  13. Bol AA, Beek RV, Meijerink A (2002) Chem Mater 14:1121–1126

    Article  Google Scholar 

  14. Awschalom DD, Kikkawa JM (1999) Phys Today 52(1999):33–38

    Article  Google Scholar 

  15. Ni WS, Lin YJ, Liu CJ, Yang YW, Horng L (2013) J Alloy Compd 556:178–181

    Article  Google Scholar 

  16. Geszke-Moritz M, Clavier G, Lulek J, Schneider R (2012) J Lumin 132:987–991

    Article  Google Scholar 

  17. Sarkar I, Sanyal MK, Kar S, Biswas S, Banerjee S, Chaudhuri S, Takeyama S, Mino H, Komori F (2007) Phys Rev B 75:224409

    Article  Google Scholar 

  18. Peng WQ, Qu SC, Cong GW, Zhang XQ, Wang ZG (2005) J Cryst Growth 282:179–185

    Article  Google Scholar 

  19. Wang ZH, Geng DY, Li D, Zhan ZD (2007) J Mater Res 22:2376–2383

    Article  Google Scholar 

  20. Tsujii N, Kitazawa H, Kido G (2003) J Appl Phys 93:6957

    Article  Google Scholar 

  21. Zuo M, Tan S, Li GP, Zhang SY (2012) Science (China) 55:219–223

    Google Scholar 

  22. Yuan HJ, Yan XQ, Zhang ZX, Liu DF, Zhou ZP, Cao L, Wang JX, Gao Y, Song L, Liu LF, Zhao XW, Dou XY, Zhou WY, Xie SS (2004) J Cryst Growth 271:403–408

    Article  Google Scholar 

  23. Lakshmi PVB, Sakthiraj K, Ramachandran K (2008) Cryst Res Technol 44:153–158

    Article  Google Scholar 

  24. El-Hagary M, Soltan S (2013) Solid State Commun 155:29–33

    Article  Google Scholar 

  25. Goktas A, Mutlu IH, Kawashi A (2012) Thin Solid Films 520:6138–6144

    Article  Google Scholar 

  26. Goktas A, Mutlu IH, Yamada Y, Celik E (2013) J Alloy Compd 553:259–266

    Article  Google Scholar 

  27. Goktas A, Mutlu IH, Yamada Y (2013) Superlatt Microstr 57:139–149

    Article  Google Scholar 

  28. Goktas A, Aslan F, Mutlu IH (2012) J Mater Sci Mater Electron 23:605–611

    Article  Google Scholar 

  29. Zarbali M, Göktaş A, Mutlu IH, Kazan S, Şale AG, Mikailzade F (2012) J Supercond Nov Magn 25:2767–2770

    Article  Google Scholar 

  30. Dean JA (1999) Lange’s handbook of chemistry. McGRAW-Hill Inc, New York

    Google Scholar 

  31. El-Hagary M, Emam-Ismail M, Shaaban ER, Al-Rashidi A, Althoyaib S (2012) Mater Chem Phys 132:581–590

    Article  Google Scholar 

  32. Cullity BD (1978) Elements of x-ray diffraction, 2nd edn. Addition-Weasley, London

    Google Scholar 

  33. Barreau N, Marsillac S, Bernede JC, Ben Nasrallah T, Belgacem S (2001) Phys Stat Sol A 184:179–186

    Google Scholar 

  34. Chauhan R, Kumar A, Chaudhary RP (2012) Chalcogenide Lett 9:151–156

    Google Scholar 

  35. Tauc J (1974) Amorphous and liquid semiconductor. Plenum, New York

    Book  Google Scholar 

  36. Agbo SN, Ezema FI (2007) The Pacific J Sci Technol 8:150–154

    Google Scholar 

  37. Fan DB, Wang H, Zhang YC, Cheng J, Yan H (2007) Surf Rev Lett 11:27–31

    Article  Google Scholar 

  38. Kanmani SS, Rajkumar N, Ramachandran K (2011) J Nano Electron Phys 3:1064–1070

    Google Scholar 

  39. Singh P, Kaushal A, Kaur D (2009) J Alloys Compd 471:11–15

    Article  Google Scholar 

  40. Singhal S, Chawla AK, Gupta HO, Chandra R (2010) Nanoscale Res Lett 5:323–331

    Article  Google Scholar 

  41. Ghosh PK, Ahmed SKF, Jana S, Chattopadhyay KK (2007) Opt Mater 29:1768–1772

    Article  Google Scholar 

  42. Xu HY, Liu YC, Xu CS, Liu YX, Shao CL, Mu R (2006) J Chem Phys 124:074707

    Article  Google Scholar 

  43. Elanchezhiyan J, Bhuvana KP, Gopalakrishnan N, Balasubramanian T (2008) Mater Lett 62:3379–3381

    Article  Google Scholar 

  44. Chen W, Zhao LF, Wang YQ, Miao JH, Liu S, Xia ZC, Yuan SL (2005) Appl Phys Lett 87:042507

    Article  Google Scholar 

  45. Ragam M, Sankar N, Ramachandran K (2011) Defect Diffus For 318:11–21

    Article  Google Scholar 

  46. Kolesnik S, Dabrowski B (2004) J Appl Phys 96:5379

    Article  Google Scholar 

  47. Delikanli S, He S, Qin Y, Zhang P, Zeng H, Zhang H, Swihart M (2008) Appl Phys Lett 93:132501

    Article  Google Scholar 

  48. Bhattacharyya S, Estrin Y, Rich DH, Zitoun D, Koltypin Y, Gedanken A (2010) J Phys Chem C 114:22002–22011

    Article  Google Scholar 

  49. Liu H, Zhang X, Li L, Wang YX, Gao KH, Li ZQ, Zheng RK, Ringer SP, Zhang B, Zhang XX (2007) Appl Phys Lett 91:072511

    Article  Google Scholar 

  50. Quynh Hoa TT, Duc The N, McVitie S, Nam NH, Van Vu L, Canh TD, Long NN (2011) Opt Mater 33:308–314

    Google Scholar 

  51. Chen H, Shi D, Qi J (2011) J Appl Phys 109:084338

    Article  Google Scholar 

  52. Saeed Y, Nazir S, Reshak AH, Shaukat A (2010) J Alloys Compd 508:245–250

    Article  Google Scholar 

  53. Anderson PW (1950) Phys Rev 79:350

    Article  Google Scholar 

  54. Xie J (2010) J Magn Magn Mater 322:L37–L41

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Higher Education Council of Turkey (YOK) and scientific and technological research council of Harran University (HUBAK) with project number 1029. The authors are grateful to Prof. Dr.Yasuji YAMADA Department of Physics and Materials, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan, for hosting and guiding of Abdullah GÖKTAŞ during his fellowship at Shimane University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Göktaş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Göktaş, A., Mutlu, İ.H. Room temperature ferromagnetism in Mn-doped ZnS nanocrystalline thin films grown by sol–gel dip coating process. J Sol-Gel Sci Technol 69, 120–129 (2014). https://doi.org/10.1007/s10971-013-3194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3194-3

Keywords

Navigation