Journal of Sol-Gel Science and Technology

, Volume 69, Issue 1, pp 47–51 | Cite as

Self-catalyzed synthesis of mesoporous carbons with tunable pore size and structure by soft-templating method

  • Peng Li
  • Yan Song
  • Zhihong Tang
  • Guangzhi Yang
  • Junhe Yang


A series of mesoporous carbons (MCs) have been obtained through organic–organic self-assembly method by using phloroglucinol–formaldehyde as carbon precursor and a reverse amphiphilic triblock copolymer as a template. Because of its acidity, the phloroglucinol was used as a catalyst itself. Results show that the pore size and structure of MCs were tailored by simply tuning the weight content of formaldehyde while keeping other reactants constant. A cylindrical mesostructure was obtained when the weight content was 1.0, 1.2 and 1.4. Further increasing the weight content to 1.6 or 2.0, a three-dimensional cage-like mesostructure was obtained. Specific surface area and pore volume up to 485 m2/g and 0.78 cm3/g can be reached, respectively. In addition, the pore size can be tuned in the range of 4.9–14.8 nm by changing the content of formaldehyde.


Mesoporous carbons Soft-templating method Self-catalysis Pore size and structure control 



This research was supported by the financial support of Fund of National Nature Science Foundation of China (NO.50602046), ICC CAS Fund for distinguished Young Scientist, State Education Ministry and Natural Science Foundation of Shanxi Province (NO.2007011075). Greatly thanks Prof. Zhi-hong Li and Prof Zhong-hua Wu from institute of High Energy and Physics for SAXS measurements assistance.


  1. 1.
    Liang Y, Fu R, Wu D (2013) ACS Nano 7:1748–1754CrossRefGoogle Scholar
  2. 2.
    Chathoth SM, Mamontov E, Melnichenko YB, Zamponi M (2010) Microporous Mesoporous Mater 132:148–153CrossRefGoogle Scholar
  3. 3.
    Zhao X, Zhang Q, Zhang B, Chen C-M, Wang A, Zhang T, Su DS (2012) J Mater Chem 22:4963–4969CrossRefGoogle Scholar
  4. 4.
    Chen S, Shen W, Zhang S (2011) J Sol Gel Sci Technol 60:131–136CrossRefGoogle Scholar
  5. 5.
    Fang Y, Lv Y, Che R, Wu H, Zhang X, Gu D, Zheng G, Zhao D (2013) J Am Chem Soc 135:1524–1530CrossRefGoogle Scholar
  6. 6.
    Horikawa T, Sakao N, Do DD (2013) Carbon 56:183–192CrossRefGoogle Scholar
  7. 7.
    Xiang D, Yin L (2012) J Mater Chem 22:9584–9593CrossRefGoogle Scholar
  8. 8.
    Jaroniec M, Choma J, Gorka J, Zawislak A (2008) Chem Mater 20:7Google Scholar
  9. 9.
    Su B-L, Vantomme AL, Surahy L, Pirard R, Pirard J-P (2007) Chem Mater 19:3325–3333CrossRefGoogle Scholar
  10. 10.
    Guo L, Cui X, Li Y, He Q, Zhang L, Bu W, Shi J (2009) Chem Asian J 4:1480–1485CrossRefGoogle Scholar
  11. 11.
    Kim Y, Cho CY, Kang JH, Cho YS, Moon JH (2012) Langmuir ACS J Surf Colloids 28:10543–10550CrossRefGoogle Scholar
  12. 12.
    Liu L, Wang F-Y, Shao G-S, Ma T-Y, Yuan Z-Y (2010) Carbon 48:2660–2664CrossRefGoogle Scholar
  13. 13.
    Sun G, Li K, Xie L, Wang J, Li Y (2012) Microporous Mesoporous Mater 151:282–286CrossRefGoogle Scholar
  14. 14.
    Li P, Song Y, Lin Q, Shi J, Liu L, He L, Ye H, Guo Q (2012) Microporous Mesoporous Mater 159:81–86CrossRefGoogle Scholar
  15. 15.
    Suryavanshi UB, Ijima T, Hayashi A, Hayashi Y, Tanemura M (2011) Chem Commun 47:10758–10760CrossRefGoogle Scholar
  16. 16.
    Ding S, Zheng S, Xie M, Peng L, Guo X, Ding W (2011) Microporous Mesoporous Mater 142:609–613CrossRefGoogle Scholar
  17. 17.
    Yoshimune M, Yamamoto T, Nakaiwa M, Haraya K (2008) Carbon 46:1031–1036CrossRefGoogle Scholar
  18. 18.
    Jin J, Nishiyama N, Egashira Y, Ueyama K (2009) Microporous Mesoporous Mater 118:218–223CrossRefGoogle Scholar
  19. 19.
    Liu L, Wang F-Y, Shao G-S, Ma T-Y, Yuan Z-Y (2010) Carbon 48:2660–2663Google Scholar
  20. 20.
    Liu C, Li L, Song H, Chen X (2007) Chem Commun 43:757–759Google Scholar
  21. 21.
    Gutiérrez MC, Picó F, Rubio F, Manuel Amarilla J, Javier Palomares F, Ferrer ML, del Monte F, Rojo JM (2009) J Mater Chem 19:1236–1240CrossRefGoogle Scholar
  22. 22.
    Jirglová H, Pérez-Cadenas AF, Maldonado-Hódar FJ (2009) Langmuir ACS J Surf Colloids 25:2461–2466Google Scholar
  23. 23.
    Mayes RT, Tsouris C, Kiggans JO Jr, Mahurin SM, DePaoli DW, Dai S (2010) J Mater Chem 20:8674–8678CrossRefGoogle Scholar
  24. 24.
    Liang C, Dai S (2006) J Am Chem Soc 126:5316–5317CrossRefGoogle Scholar
  25. 25.
    Li P, Song Y, Guo Q, Shi J, Liu L (2011) Mater Lett 65:2130–2132CrossRefGoogle Scholar
  26. 26.
    Liu D, Lei J-H, Guo L-P, Qu D, Li Y, Su B-L (2012) Carbon 50:476–487CrossRefGoogle Scholar
  27. 27.
    Ustinov EA, Do DD, Jaroniec M (2005) Appl Surf Sci 252:1013–1028CrossRefGoogle Scholar
  28. 28.
    Górka J, Fenning C, Jaroniec M (2009) Colloids Surf A 352:113–117CrossRefGoogle Scholar
  29. 29.
    Enterría M, Suárez-García F, Martínez-Alonso A, Tascón JMD (2013) Carbon 54:365–377CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Peng Li
    • 1
  • Yan Song
    • 2
  • Zhihong Tang
    • 1
  • Guangzhi Yang
    • 1
  • Junhe Yang
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Key Laboratory of Carbon MaterialsInstitute of Coal ChemistryTaiyuanChina

Personalised recommendations